cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A184117 Lower s-Wythoff sequence, where s(n) = 2n + 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124, 125, 126, 128, 129, 131, 132, 134, 135, 136, 138, 139, 141
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2011

Keywords

Comments

Suppose that s(n) is a nondecreasing sequence of positive integers. The lower and upper s(n)-Wythoff sequences, a and b, are introduced here. Define
a(1) = 1; b(1) = s(1) + a(1); and for n>=2,
a(n) = least positive integer not in {a(1),...,a(n-1),b(1),...,b(n-1)},
b(n) = s(n) + a(n).
Clearly, a and b are complementary. If s(n)=n, then
a=A000201, the lower Wythoff sequence, and
b=A001950, the upper Wythoff sequence.
A184117 is chosen to represent the class of s-Wythoff sequences for which s is an arithmetic sequence given by s(n) = kn - r. Such sequences (lower and upper) are indexed in the OEIS as shown here:
n+1....A026273...A026274
n......A000201...A001950 (the classical Wythoff sequences)
2n+1...A184117...A184118
2n.....A001951...A001952
2n-1...A136119...A184119
3n+1...A184478...A184479
3n.....A184480...A001956
3n-1...A184482...A184483
3n-2...A184484...A184485
4n+1...A184486...A184487
4n.....A001961...A001962
4n-1...A184514...A184515
The pattern continues for A184516 to A184531.
s-Wythoff sequences for choices of s other than arithmetic sequences include these:
A184419 and A184420 (s = lower Wythoff sequence)
A184421 and A184422 (s = upper Wythoff sequence)
A184425 and A184426 (s = triangular numbers)
A184427 and A184428 (s = squares)
A036554 and A003159 (invariant and limiting sequences).

Examples

			s=(3,5,7,9,11,13,...);
a=(1,2,3,5,6,8,...);
b=(4,7,10,14,17,21,...).
		

Crossrefs

Programs

  • Mathematica
    k=2; r=-1;
    mex:=First[Complement[Range[1,Max[#1]+1],#1]]&;
    s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];
    a[n_]:=a[n]=mex[Flatten[Table[{a[i],b[i]},{i,1,n-1}]]];
    Table[s[n],{n,30}]  (* s = A005408 except for initial 1 *)
    Table[a[n],{n,100}] (* a = A184117 *)
    Table[b[n],{n,100}] (* b = A184118 *)
  • PARI
    A184117_upto(N,s(n)=2*n+1,a=[1],U=a)={while(a[#a]1&&U[2]==U[1]+1,U=U[^1]);a=concat(a,U[1]+1));a} \\ M. F. Hasler, Jan 07 2019

Formula

a(n) = A184118(n) - s(n). - M. F. Hasler, Jan 07 2019

Extensions

Removed an incorrect g.f., Alois P. Heinz, Dec 14 2012

A022342 Integers with "even" Zeckendorf expansions (do not end with ...+F_2 = ...+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Keywords

Comments

The Zeckendorf expansion of n is obtained by repeatedly subtracting the largest Fibonacci number you can until nothing remains; for example, 100 = 89 + 8 + 3.
The Fibonacci successor to n is found by replacing each F_i in the Zeckendorf expansion by F_{i+1}; for example, the successor to 100 is 144 + 13 + 5 = 162.
If k appears, k + (rank of k) does not (10 is the 7th term in the sequence but 10 + 7 = 17 is not a term of the sequence). - Benoit Cloitre, Jun 18 2002
From Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001: (Start)
a(n) = Sum_{k in A_n} F_{k+1}, where a(n)= Sum_{k in A_n} F_k is the (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >= 2).
a(10^n) gives the first few digits of g = (sqrt(5)+1)/2.
The sequences given by b(n+1) = a(b(n)) obey the general recursion law of Fibonacci numbers. In particular the (sub)sequence (of a(-)) yielded by a starting value of 2=a(1), is the sequence of Fibonacci numbers >= 2. Starting points of all such subsequences are given by A035336.
a(n) = floor(phi*n+1/phi); phi = (sqrt(5)+1)/2. a(F_n)=F_{n+1} if F_n is the n-th Fibonacci number.
(End)
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an even number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is even.
The asymptotic density of this sequence is 1/phi (A094214). (End)

Examples

			The successors to 1, 2, 3, 4=3+1 are 2, 3, 5, 7=5+2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Positions of 0's in A003849.
Complement of A003622.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a022342 n = a022342_list !! (n-1)
    a022342_list = filter ((notElem 1) . a035516_row) [0..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*(Sqrt(5)+1)/2)-1: n in [1..100]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A022342 := proc(n)
          local g;
          g := (1+sqrt(5))/2 ;
        floor(n*g)-1 ;
    end proc: # R. J. Mathar, Aug 04 2013
  • Mathematica
    With[{t=GoldenRatio^2},Table[Floor[n*t]-n-1,{n,70}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)-1
    
  • PARI
    a(n)=(sqrtint(5*n^2)+n-2)\2 \\ Charles R Greathouse IV, Feb 27 2014
    
  • Python
    from math import isqrt
    def A022342(n): return (n+isqrt(5*n**2)>>1)-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(n*phi^2) - n - 1 = floor(n*phi) - 1 = A000201(n) - 1, where phi is the golden ratio.
a(n) = A003622(n) - n. - Philippe Deléham, May 03 2004
a(n+1) = A022290(2*A003714(n)). - R. J. Mathar, Jan 31 2015
For n > 1: A035612(a(n)) > 1. - Reinhard Zumkeller, Feb 03 2015
a(n) = A000201(n) - 1. First differences are given in A014675 (or A001468, ignoring its first term). - M. F. Hasler, Oct 13 2017
a(n) = a(n-1) + 1 + A005614(n-2) for n > 1; also a(n) = a(n-1) + A014675(n-2) = a(n-1) + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

Extensions

Name edited by Peter Munn, Dec 07 2021

A022290 Replace 2^k in binary expansion of n with Fibonacci(k+2).

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 5, 6, 7, 8, 8, 9, 10, 11, 8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19, 13, 14, 15, 16, 16, 17, 18, 19, 18, 19, 20, 21, 21, 22, 23, 24, 21, 22, 23, 24, 24, 25, 26, 27, 26, 27, 28, 29, 29, 30, 31, 32, 21, 22, 23, 24, 24, 25, 26
Offset: 0

Views

Author

Keywords

Examples

			n=4 = 2^2 is replaced by A000045(2+2) = 3. n=5 = 2^2 + 2^0 is replaced by A000045(2+2) + A000045(0+2) = 3+1 = 4. - _R. J. Mathar_, Jan 31 2015
From _Philippe Deléham_, Jun 05 2015: (Start)
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
  0
  1
  2, 3
  3, 4, 5, 6
  5, 6, 7, 8, 8, 9, 10, 11
  8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19
  ...
(End)
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A054204 (even-indexed Fibonacci numbers), A062877 (odd-indexed Fibonacci numbers), A059590 (factorials), A089625 (primes).

Programs

  • Haskell
    a022290 0 = 0
    a022290 n = h n 0 $ drop 2 a000045_list where
       h 0 y _      = y
       h x y (f:fs) = h x' (y + f * r) fs where (x',r) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A022290 := proc(n)
        dgs := convert(n,base,2) ;
        add( op(i,dgs)*A000045(i+1),i=1..nops(dgs)) ;
    end proc: # R. J. Mathar, Jan 31 2015
    # second Maple program:
    b:= (n, i, j)-> `if`(n=0, 0, j*irem(n, 2, 'q')+b(q, j, i+j)):
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..127);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    Table[Reverse[#].Fibonacci[1 + Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 54}] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
  • PARI
    my(m=Mod('x,'x^2-'x-1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ Kevin Ryde, Sep 22 2020
    
  • Python
    def A022290(n):
        a, b, s = 1,2,0
        for i in bin(n)[-1:1:-1]:
            s += int(i)*a
            a, b = b, a+b
        return s # Chai Wah Wu, Sep 10 2022

Formula

G.f.: (1/(1-x)) * Sum_{k>=0} F(k+2)*x^2^k/(1+x^2^k), where F = A000045.
a(n) = Sum_{k>=0} A030308(n,k)*A000045(k+2). - Philippe Deléham, Oct 15 2011
a(A003714(n)) = n. - R. J. Mathar, Jan 31 2015
a(A000225(n)) = A001911(n). - Philippe Deléham, Jun 05 2015
From Jeffrey Shallit, Jul 17 2018: (Start)
Can be computed from the recurrence:
a(4*k) = a(k) + a(2*k),
a(4*k+1) = a(k) + a(2*k+1),
a(4*k+2) = a(k) - a(2*k) + 2*a(2*k+1),
a(4*k+3) = a(k) - 2*a(2*k) + 3*a(2*k+1),
and the initial terms a(0) = 0, a(1) = 1. (End)
a(A003754(n)) = n-1. - Rémy Sigrist, Jan 28 2020
From Rémy Sigrist, Aug 04 2022: (Start)
Empirically:
- a(2*A003714(n)) = A022342(n+1),
- a(3*A003714(n)) = a(4*A003714(n)) = A026274(n) for n > 0.
(End)

A035612 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 8, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 9, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 10, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Ordinal transform of A003603. Removing all 1's from this sequence and decrementing the remaining numbers generates the original sequence. - Franklin T. Adams-Watters, Aug 10 2012
It can be shown that a(n) is the index of the smallest Fibonacci number used in the Zeckendorf representation of n, where f(0)=f(1)=1. - Rachel Chaiser, Aug 18 2017
The asymptotic density of the occurrences of k = 1, 2, ..., is (2-phi)/phi^(k-1), where phi is the golden ratio (A001622). The asymptotic mean of this sequence is 1 + phi (A104457). - Amiram Eldar, Nov 02 2023

Examples

			After the first 6 we see "1 2 3 1 4 1 2" then 7.
		

Crossrefs

Programs

  • Haskell
    a035612 = a007814 . a022340
    -- Reinhard Zumkeller, Jul 20 2015, Mar 10 2013
  • Mathematica
    f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n-1], Most[f[n-2]], {n}]; f[11] (* Jean-François Alcover, Feb 22 2012 *)

Formula

The segment between the first M and the first M+1 is given by the segment before the first M-1.
a(A022342(n)) > 1; a(A026274(n) + 1) = 1. - Reinhard Zumkeller, Jul 20 2015
a(n) = v2(A022340(n)), where v2(n) = A007814(n), the dyadic valuation of n. - Ralf Stephan, Jun 20 2004. In other words, a(n) = A007814(A003714(n)) + 1, which is certainly true. - Don Reble, Nov 12 2005
From Rachel Chaiser, Aug 18 2017: (Start)
a(n) = a(p(n))+1 if n = b(p(n)) where p(n) = floor((n+2)/phi)-1 and b(n) = floor((n+1)*phi)-1 where phi=(1+sqrt(5))/2; a(n)=1 otherwise.
a(n) = 3 - n_1 + s_z(n-1) - s_z(n) + s_z(p(n-1)) - s_z(p(n)), where s_z(n) is the Zeckendorf sum of digits of n (A007895), and n_1 is the least significant digit in the Zeckendorf representation of n. (End)

Extensions

Formula corrected by Tom Edgar, Jul 09 2018

A101330 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 1, k >= 1.

Original entry on oeis.org

3, 5, 5, 8, 8, 8, 11, 13, 13, 11, 13, 18, 21, 18, 13, 16, 21, 29, 29, 21, 16, 18, 26, 34, 40, 34, 26, 18, 21, 29, 42, 47, 47, 42, 29, 21, 24, 34, 47, 58, 55, 58, 47, 34, 24, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 32, 47
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). (The eps(i) are 0 or 1 and no two consecutive eps(i) are both 1.) Then the Fibonacci (or circle) product of n and k is n o k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j} (= T(n,k)).
The Zeckendorf expansion can be written n = Sum_{i=1..k} F(a_i), where a_{i+1} >= a_i + 2. In this formulation, the product becomes: if n = Sum_{i=1..k} F(a_i) and m = Sum_{j=1..l} F(b_j) then n o m = Sum_{i=1..k} Sum_{j=1..l} F(a_i + b_j).
Knuth shows that this multiplication is associative. This is not true if we change the product to n X k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j-2}, see A101646. Of course 1 is not a multiplicative identity here, whereas it is in A101646.
The papers by Arnoux, Grabner et al. and Messaoudi discuss this sequence and generalizations.

Examples

			Array begins:
   3   5   8  11   13   16   18   21   24 ...
   5   8  13  18   21   26   29   34   39 ...
   8  13  21  29   34   42   47   55   63 ...
  11  18  29  40   47   58   65   76   87 ...
  13  21  34  47   55   68   76   89  102 ...
  16  26  42  58   68   84   94  110  126 ...
  18  29  47  65   76   94  105  123  141 ...
  21  34  55  76   89  110  123  144  165 ...
  24  39  63  87  102  126  141  165  189 ...
  ...........................................
		

Crossrefs

See A101646 and A135090 for other versions.
Main diagonal is A101332.
Rows: A026274 (row 1), A101345 (row 2), A101642 (row 3).
Cf. A101385, A101633, A101858 for related definitions of product.

Programs

  • Maple
    h := n -> floor(2*(n + 1)/(sqrt(5) + 3)):  # A060144(n+1)
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(print(seq(T(n, k), k = 1..9)), n = 1..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfp[i, n - i], {n, 2, 13}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)
    A101330[n_, k_]:=3*n*k-n*Floor[(k+1)/GoldenRatio^2]-k*Floor[(n+1)/GoldenRatio^2];
    Table[A101330[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)

Formula

T(n, k) = 3*n*k - n*floor((k+1)/phi^2) - k*floor((n+1)/phi^2). For proof see link. - Fred Lunnon, May 19 2008
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024

Extensions

More terms from David Applegate, Jan 26 2005

A101345 a(n) = Knuth's Fibonacci (or circle) product "2 o n".

Original entry on oeis.org

5, 8, 13, 18, 21, 26, 29, 34, 39, 42, 47, 52, 55, 60, 63, 68, 73, 76, 81, 84, 89, 94, 97, 102, 107, 110, 115, 118, 123, 128, 131, 136, 141, 144, 149, 152, 157, 162, 165, 170, 173, 178, 183, 186, 191, 196, 199, 204, 207, 212, 217, 220, 225, 228, 233, 238, 241, 246
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Numbers whose Zeckendorf representation ends with 000. - Benoit Cloitre, Jan 11 2014
The asymptotic density of this sequence is sqrt(5)-2. - Amiram Eldar, Mar 21 2022

Crossrefs

Second row of array in A101330.
Set-wise difference of A026274 - A035337.

Programs

Formula

a(n) = floor(phi^3*(n+1)) - 3 - floor(2*phi*(n+1)) + 2*floor(phi*(n+1)) where phi = (1+sqrt(5))/2. - Benoit Cloitre, Jan 11 2014
a(n) = 2*A000201(n+1) + n - 2. See the comments in A101642. - Michel Dekking, Dec 23 2019

Extensions

More terms from David Applegate, Jan 26 2005
More terms from Robert G. Wilson v, Feb 04 2005

A026273 a(n) = least k such that s(k) = n, where s = A026272.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 23, 25, 27, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 57, 59, 61, 62, 64, 65, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99
Offset: 1

Views

Author

Keywords

Comments

This is the lower s-Wythoff sequence, where s(n)=n+1.
See A184117 for the definition of lower and upper s-Wythoff sequences. The first few terms of a and its complement, b=A026274, are obtained generated as follows:
s=(2,3,4,5,6,...);
a=(1,2,4,6,7,...)=A026273;
b=(3,5,8,11,13,...)=A026274.
Briefly: b=s+a, and a=mex="least missing".
From Michel Dekking, Mar 12 2018: (Start)
One has r*(n-2*r+3) = n*r-2r^2+3*r = (n+1)*r-2.
So a(n) = (n+1)*r-2, and we see that this sequence is simply the Beatty sequence of the golden ratio, shifted spatially and temporally. In other words: if w = A000201 = 1,3,4,6,8,9,11,12,14,... is the lower Wythoff sequence, then a(n) = w(n+2) - 2.
(N.B. As so often, there is the 'offset 0 vs 1 argument', w = A000201 has offset 1; it would have been better to give (a(n)) offset 1, too).
This observation also gives an answer to Lenormand's question, and a simple proof of Mathar's conjecture in A059426.
(End)

Crossrefs

Programs

  • Mathematica
    r=(1+Sqrt[5])/2;
    a[n_]:=Floor[r*(n-2r+3)];
    b[n_]:=Floor[r*r*(n+2r-3)];
    Table[a[n],{n,200}]   (* A026273 *)
    Table[b[n],{n,200}]   (* A026274 *)

Formula

a(n) = floor[r*(n-2*r+3)], where r=golden ratio.
b(n) = floor[(r^2)*(n+2*r-3)] = floor(n*A104457-A134972+1).

Extensions

Extended by Clark Kimberling, Jan 14 2011

A101646 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330). Sometimes called the "arroba" product.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 5, 6, 8, 11, 11, 8, 6, 7, 10, 13, 15, 13, 10, 7, 8, 11, 16, 18, 18, 16, 11, 8, 9, 13, 18, 22, 21, 22, 18, 13, 9, 10, 15, 21, 25, 26, 26, 25, 21, 15, 10, 11, 16, 24, 29, 29, 32, 29, 29, 24, 16, 11, 12, 18, 26, 33, 34, 36, 36, 34, 33, 26, 18, 12
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). The product of n and k is defined here to be n x k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j-2} (= T(n,k)). [Comment corrected by R. J. Mathar, Aug 07 2007]
Although now 1 is the multiplicative identity, in contrast to A101330, this multiplication is not associative. For example, as pointed out by Grabner et al., we have (4 x 7 ) x 9 = 25 x 9 = 198 but 4 x (7 x 9 ) = 4 x 54 = 195.

Examples

			Array begins:
  1 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 ...
  2 3  5  7  8 10 11 13 15 16 18 20 21 23 24 26 28 29 31 ...
  3 5  8 11 13 16 18 21 24 26 29 32 34 37 39 42 45 47 50 ...
  4 7 11 15 18 22 25 29 33 36 40 44 47 51 54 58 62 65 69 ...
  5 8 13 18 21 26 29 34 39 42 47 52 55 60 63 68 73 76 81 ...
...
		

Crossrefs

Cf. A101330, A101385, A035517, A014417. Main diagonal is A101711.
First 4 rows give A000027, A022342, A026274, A101741.

Programs

  • Mathematica
    T[n_, k_] := With[{phi2 = GoldenRatio^2}, n k - Floor[(k + 1)/phi2] Floor[ (n + 1)/phi2]];
    Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2020 *)
  • PARI
    T(n, k) = my(phi2 = ((1+sqrt(5))/2)^2); n*k - floor((k+1)/phi2)*floor((n+1)/phi2); \\ Michel Marcus, Mar 29 2016

Formula

T(n, k) = n*k - [(k+1)/phi^2] [(n+1)/phi^2]. For proof see link. - Fred Lunnon, May 24 2008

A354513 The numbers whose square's position in the Wythoff array is immediately followed by another square in the next column.

Original entry on oeis.org

11, 386, 2441, 25748423, 637519684, 2799936925, 3934324789543, 127501370029150, 21274660147684109, 644571595359295797, 15845190736671957299, 995980378496501932493, 47375682236837399943653, 213688560255016550712685, 28372206851301867342910959, 3120729065082950391169492805
Offset: 1

Views

Author

Chittaranjan Pardeshi, Aug 16 2022

Keywords

Comments

From Jianing Song, Aug 21 2022: (Start)
Numbers k > 0 such that floor((k^2+1)*phi) - 1 is a square, phi = A001622.
Suppose that k is a term and that floor((k^2+1)*phi) = m^2+1, then (m^2+1)/(k^2+1) < phi < (m^2+2)/(k^2+1), so |sqrt(phi) - m/k| < max{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = m/k - sqrt((m^2+1)/(k^2+1)) <= sqrt((k^2+1)*phi-1)/k - sqrt(phi) < 1/(2*sqrt(phi)*k^2). According to the Mathematics Stack Exchange link, m/k is a convergent to sqrt(phi), so this is a subsequence of A225205. The terms are b(3), b(5), b(11), b(15), b(19), b(20), ... for b = A225205.
For k = A225205(r), m = A225204(r), we have |sqrt(phi) - m/k| < 1/(k*A225205(r+1)) (by Theorem 5 of the Wikipedia link), so k = A225205(r) is a term if 1/(k*A225205(r+1)) < min{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = sqrt((m^2+2)/(k^2+1)) - m/k, or A225205(r+1) > (k*sqrt((m^2+2)/(k^2+1)) - m)^(-1).
If k = A225205(r) is a term with even r, then k is also in A354549, since m^2 < k^2*phi < k^2*(m^2+2)/(k^2+1) < m^2+phi^(-2) for m = A225204(r), so floor(k^2*phi) = m^2. Furthermore we have {k^2*phi} < phi^(-2), where {} denotes the fractional part. Conversely, if k is in A354549 and {k^2*phi} < phi^(-2), then k is in this sequence since floor((k^2+1)*phi) = floor(k^2*phi)+1 in this case. (End)

Examples

			11 is a term since 11^2 = 121 has another square, 196 = 14^2, immediately to its right in the Wythoff array. Array row: 46, 75, 121, 196, ...
		

Crossrefs

Programs

  • PARI
    phi=quadgen(5);
    nextcolumn(x) = ((x+1)*phi-1)\1; \\ A026274(x+1)
    for(i=1, 10000000000, if ( issquare( nextcolumn (i^2)), print1(i, ", ")));
    
  • PARI
    A000201(n) = (n+sqrtint(5*n^2))\2;
    my(cofr=A331692_vector_bits(1000), conv=matrix(2, #cofr)); conv[, 1]=[1, 1]~; conv[, 2]=[4, 3]~; for(n=3, #cofr, conv[, n]=cofr[n]*conv[, n-1]+conv[, n-2]; if(A000201(conv[2, n]^2+1) == conv[1, n]^2+1, print1(conv[2, n], ", "))) \\ Jianing Song, Aug 21 2022, modified on Aug 28 2022 according to Kevin Ryde's program for A331692
Showing 1-10 of 14 results. Next