cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003603 Fractal sequence obtained from Fibonacci numbers (or Wythoff array).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 6, 4, 3, 7, 2, 8, 5, 1, 9, 6, 4, 10, 3, 11, 7, 2, 12, 8, 5, 13, 1, 14, 9, 6, 15, 4, 16, 10, 3, 17, 11, 7, 18, 2, 19, 12, 8, 20, 5, 21, 13, 1, 22, 14, 9, 23, 6, 24, 15, 4, 25, 16, 10, 26, 3, 27, 17, 11, 28, 7, 29, 18, 2, 30, 19, 12, 31, 8, 32, 20, 5, 33
Offset: 1

Views

Author

Keywords

Comments

Length of n-th row = A000045(n); last term of n-th row = A094967(n-1); sum of n-th row = A033192(n-1). - Reinhard Zumkeller, Jan 26 2012

Examples

			In the recurrence for making new rows, we get row 5 from row 4 thus: write row 4: 1,3,2, and then place 4 right after 1, and place 5 right after 2, getting 1,4,3,2,5. - _Clark Kimberling_, Oct 29 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    -- according to Kimberling, see formula section.
    a003603 n k = a003603_row n !! (k-1)
    a003603_row n = a003603_tabl !! (n-1)
    a003603_tabl = [1] : [1] : wythoff [2..] [1] [1] where
       wythoff is xs ys = f is xs ys [] where
          f js     []     []     ws = ws : wythoff js ys ws
          f js     []     [v]    ws = f js [] [] (ws ++ [v])
          f (j:js) (u:us) (v:vs) ws
            | u == v = f js us vs (ws ++ [v,j])
            | u /= v = f (j:js) (u:us) vs (ws ++ [v])
    -- Reinhard Zumkeller, Jan 26 2012
  • Maple
    A003603 := proc(n::posint)
        local r,c,W ;
        for r from 1 do
            for c from 1 do
                W := A035513(r,c) ;
                if W = n then
                    return r ;
                elif W > n then
                    break ;
                end if;
            end do:
        end do:
    end proc:
    seq(A003603(n),n=1..100) ; # R. J. Mathar, Aug 13 2021
  • Mathematica
    num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]];
    left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n];
    fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@
       FixedPoint[left[#, b] &, n];
    Table[fractal[n, Table[Fibonacci[i], {i, 2, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *)
    row[1] = row[2] = {1};
    row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n-1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n-2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro];
    Array[row, 9] // Flatten (* Jean-François Alcover, Jul 12 2016 *)

Formula

Vertical para-budding sequence: says which row of Wythoff array (starting row count at 1) contains n.
If one deletes the first occurrence of 1, 2, 3, ... the sequence is unchanged.
From Clark Kimberling, Oct 29 2009: (Start)
The fractal sequence of the Wythoff array can be constructed without reference to the Wythoff array or Fibonacci numbers. Write initial rows:
Row 1: .... 1
Row 2: .... 1
Row 3: .... 1..2
Row 4: .... 1..3..2
For n>4, to form row n+1, let k be the least positive integer not yet used; write row n, and right after the first number that is also in row n-1, place k; right after the next number that is also in row n-1, place k+1, and continue. A003603 is the concatenation of the rows. (End)
Conjecture: a(n) = abs(floor(n/phi) - floor(n*(1/phi + 1/(-phi)^(A035612(n) + 1)))) where phi = (1+sqrt(5))/2. - Alan Michael Gómez Calderón, Oct 27 2023

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Keyword tabf added by Reinhard Zumkeller, Jan 26 2012

A022342 Integers with "even" Zeckendorf expansions (do not end with ...+F_2 = ...+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Keywords

Comments

The Zeckendorf expansion of n is obtained by repeatedly subtracting the largest Fibonacci number you can until nothing remains; for example, 100 = 89 + 8 + 3.
The Fibonacci successor to n is found by replacing each F_i in the Zeckendorf expansion by F_{i+1}; for example, the successor to 100 is 144 + 13 + 5 = 162.
If k appears, k + (rank of k) does not (10 is the 7th term in the sequence but 10 + 7 = 17 is not a term of the sequence). - Benoit Cloitre, Jun 18 2002
From Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001: (Start)
a(n) = Sum_{k in A_n} F_{k+1}, where a(n)= Sum_{k in A_n} F_k is the (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >= 2).
a(10^n) gives the first few digits of g = (sqrt(5)+1)/2.
The sequences given by b(n+1) = a(b(n)) obey the general recursion law of Fibonacci numbers. In particular the (sub)sequence (of a(-)) yielded by a starting value of 2=a(1), is the sequence of Fibonacci numbers >= 2. Starting points of all such subsequences are given by A035336.
a(n) = floor(phi*n+1/phi); phi = (sqrt(5)+1)/2. a(F_n)=F_{n+1} if F_n is the n-th Fibonacci number.
(End)
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an even number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is even.
The asymptotic density of this sequence is 1/phi (A094214). (End)

Examples

			The successors to 1, 2, 3, 4=3+1 are 2, 3, 5, 7=5+2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Positions of 0's in A003849.
Complement of A003622.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a022342 n = a022342_list !! (n-1)
    a022342_list = filter ((notElem 1) . a035516_row) [0..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*(Sqrt(5)+1)/2)-1: n in [1..100]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A022342 := proc(n)
          local g;
          g := (1+sqrt(5))/2 ;
        floor(n*g)-1 ;
    end proc: # R. J. Mathar, Aug 04 2013
  • Mathematica
    With[{t=GoldenRatio^2},Table[Floor[n*t]-n-1,{n,70}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)-1
    
  • PARI
    a(n)=(sqrtint(5*n^2)+n-2)\2 \\ Charles R Greathouse IV, Feb 27 2014
    
  • Python
    from math import isqrt
    def A022342(n): return (n+isqrt(5*n**2)>>1)-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(n*phi^2) - n - 1 = floor(n*phi) - 1 = A000201(n) - 1, where phi is the golden ratio.
a(n) = A003622(n) - n. - Philippe Deléham, May 03 2004
a(n+1) = A022290(2*A003714(n)). - R. J. Mathar, Jan 31 2015
For n > 1: A035612(a(n)) > 1. - Reinhard Zumkeller, Feb 03 2015
a(n) = A000201(n) - 1. First differences are given in A014675 (or A001468, ignoring its first term). - M. F. Hasler, Oct 13 2017
a(n) = a(n-1) + 1 + A005614(n-2) for n > 1; also a(n) = a(n-1) + A014675(n-2) = a(n-1) + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

Extensions

Name edited by Peter Munn, Dec 07 2021

A026274 Greatest k such that s(k) = n, where s = A026272.

Original entry on oeis.org

3, 5, 8, 11, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 39, 42, 45, 47, 50, 52, 55, 58, 60, 63, 66, 68, 71, 73, 76, 79, 81, 84, 87, 89, 92, 94, 97, 100, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 128, 131, 134, 136, 139, 141, 144
Offset: 1

Views

Author

Keywords

Comments

This is the upper s-Wythoff sequence, where s(n)=n+1.
See comments at A026273.
Conjecture: This sequence consists precisely of those numbers without a 1 or 2 in their Zeckendorf representation. [In other words, numbers which are the sum of distinct nonconsecutive Fibonacci numbers greater than 2.] - Charles R Greathouse IV, Jan 28 2015
A Beatty sequence with complement A026273. - Robert G. Wilson v, Jan 30 2015
A035612(a(n)+1) = 1. - Reinhard Zumkeller, Jul 20 2015
From Michel Dekking, Mar 12 2018: (Start)
One has r*r*(n-2*r+3) = n*r^2 -2r^3+3*r^2 = (n+1)*r^2 -2, where r = (1+sqrt(5))/2.
So a(n) = floor((n+1)*r^2)-2, and we see that this sequence is simply the Beatty sequence of the square of the golden ratio, shifted spatially and temporally. In other words, if w = A001950 = 2,5,7,10,13,15,18,20,... is the upper Wythoff sequence, then a(n) = w(n+1) - 2.
(End)
From Michel Dekking, Apr 05 2020: (Start)
Proof of the conjecture by Charles R Greathouse IV.
Let Z(n) = d(L)...d(1)d(0) be the Zeckendorf expansion of n. Well-known is:
d(0) = 1 if and only if n = floor(k*r^2) - 1
for some integer k (see A003622).
Then the same characterization holds for n with d(1)d(0) = 01, since 11 does not appear in a Zeckendorf expansion. But such an n has predecessor n-1 which always has an expansion with d(1)d(0) = 00. Combined with my comment from March 2018, this proves the conjecture (ignoring n = 0). (End)
It appears that these are the integers m for which A007895(m+1) > A007895(m) where A007895(m) is the number of terms in Zeckendorf representation of m. - Michel Marcus, Oct 30 2020
This follows directly from Theorem 4 in my paper "Points of increase of the sum of digits function of the base phi expansion". - Michel Dekking, Oct 31 2020

Crossrefs

Programs

  • Haskell
    a026274 n = a026274_list !! (n-1)
    a026274_list = map (subtract 1) $ tail $ filter ((== 1) . a035612) [1..]
    -- Reinhard Zumkeller, Jul 20 2015
    
  • Mathematica
    r=(1+Sqrt[5])/2;
    a[n_]:=Floor[r*r*(n+2r-3)];
    Table[a[n],{n,200}]
    Table[Floor[GoldenRatio^2 (n+2*GoldenRatio-3)],{n,60}] (* Harvey P. Dale, Dec 23 2022 *)
  • PARI
    a(n)=my(w=quadgen(20),phi=(1+w)/2); phi^2*(n+2*phi-3)\1 \\ Charles R Greathouse IV, Nov 10 2021
    
  • Python
    from math import isqrt
    def A026274(n): return (n+1+isqrt(5*(n+1)**2)>>1)+n-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(r*r*(n+2r-3)), where r = (1+sqrt(5))/2 = A001622. [Corrected by Tom Edgar, Jan 30 2015]
a(n) = 3*n - floor[(n+1)/(1+phi)], phi = (1+sqrt(5))/2. - Joshua Tobin (tobinrj(AT)tcd.ie), May 31 2008
a(n) = A003622(n+1) - 1 for n>1 (conjectured). - Michel Marcus, Oct 30 2020
This conjectured formula follows directly from the formula a(n) = floor((n+1)*r^2)-2 in my Mar 12 2018 comment above. - Michel Dekking, Oct 31 2020

Extensions

Extended by Clark Kimberling, Jan 14 2011

A035614 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 7, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 8, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3
Offset: 0

Views

Author

Keywords

Comments

This is probably the same as the "Fibonacci ruler function" mentioned by Knuth. - N. J. A. Sloane, Aug 03 2012
From Amiram Eldar, Mar 10 2021: (Start)
a(n) is the number of the trailing zeros in the Zeckendorf representation of (n+1) (A014417).
The asymptotic density of the occurrences of k is 1/phi^(k+2), where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is phi. (End)

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179.

Crossrefs

Programs

  • Haskell
    a035614 = a122840 . a014417 . (+ 1)  -- Reinhard Zumkeller, Mar 10 2013
    
  • Mathematica
    max = 81; wy = Table[(n-k)*Fibonacci[k] + Fibonacci[k+1]*Floor[ GoldenRatio*(n - k + 1)], {n, 1, max}, {k, 1, n}]; a[n_] := Position[wy, n][[1, 2]]-1; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Nov 02 2011 *)
  • Python
    from sympy import fibonacci
    def a122840(n): return len(str(n)) - len(str(int(str(n)[::-1])))
    def a014417(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def a(n): return a122840(a014417(n + 1)) # Indranil Ghosh, Jun 09 2017, after Haskell code by Reinhard Zumkeller

Formula

The segment between the first M and the first M+1 is given by the segment before the first M-1.
a(n) = A122840(A014417(n + 1)). - Indranil Ghosh, Jun 09 2017

A083368 a(n) is the position of the highest one in A003754(n).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 8, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 9, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2
Offset: 1

Views

Author

Gary W. Adamson, Jun 04 2003

Keywords

Comments

Previous name was: A Fibbinary system represents a number as a sum of distinct Fibonacci numbers (instead of distinct powers of two). Using representations without adjacent zeros, a(n) = the highest bit-position which changes going from n-1 to n.
A003754(n), when written in binary, is the representation of n.
Often one uses Fibbinary representations without adjacent ones (the Zeckendorf expansion).
a(A000071(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
From Gus Wiseman, Jul 24 2025: (Start)
Conjecture: To obtain this sequence, start with A245563 (maximal run lengths of binary indices), then remove empty and duplicate rows (giving A385817), then take the first term of each remaining row. Some variations:
- For sum instead of first term we appear to have A200648.
- For length instead of first term we appear to have A200650+1.
- For last instead of first term we have A385892.
(End)

Examples

			27 is represented 110111, 28 is 111010; the fourth position changes, so a(28)=4.
		

References

  • Jay Kappraff, Beyond Measure: A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, page 460.

Crossrefs

A035612 is the analogous sequence for Zeckendorf representations.
A001511 is the analogous sequence for power-of-two representations.
Appears to be the first element of each row of A385817, see A083368, A200648, A200650, A385818, A385892.
A000120 counts ones in binary expansion.
A245563 gives run lengths of binary indices, see A089309, A090996, A245562, A246029, A328592.
A384877 gives anti-run lengths of binary indices, ranks A385816.

Programs

  • Haskell
    a083368 n = a083368_list !! (n-1)
    a083368_list = concat $ h $ drop 2 a000071_list where
       h (a:fs@(a':_)) = (map (a035612 . (a' -)) [a .. a' - 1]) : h fs
    -- Reinhard Zumkeller, Aug 10 2014

Formula

For n = F(a)-1 to F(a+1)-2, a(n) = A035612(F(a+1)-1-n).
a(n) = a(k)+1 if n = ceiling(phi*k) where phi is the golden ratio; otherwise a(n) = 1. - Tom Edgar, Aug 25 2015

Extensions

Edited by Don Reble, Nov 12 2005
Shorter name from Joerg Arndt, Jul 27 2025

A316628 a(1)=1, a(2)=2, a(3)=2, a(4)=3; a(n) = a(n-a(n-1))+a(n-1-a(n-2)-a(n-2-a(n-2))) for n > 4.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 24, 25, 26, 26, 26, 26, 27, 28, 28, 29, 29, 29, 29, 29, 30, 31, 31
Offset: 1

Views

Author

Nathan Fox, Jul 08 2018

Keywords

Comments

This sequence increases slowly.
k occurs A035612(k) times.
Each Fibonacci number occurs more times than any number before it.

Crossrefs

Programs

  • GAP
    a:=[1,2,2,3];; for n in [5..80] do a[n]:=a[n-a[n-1]]+a[n-1-a[n-2]-a[n-2-a[n-2]]]; od; a; # Muniru A Asiru, Jul 09 2018
  • Magma
    I:=[1,2,2,3]; [n le 4 select I[n] else Self(n-Self(n-1))+Self(n-1-Self(n-2)-Self(n-2-Self(n-2))): n in [1..100]]; // Vincenzo Librandi, Jul 09 2018
    
  • Maple
    A316628:=proc(n) option remember: if n <= 0 then 0: elif n = 1 then 1: elif n = 2 then 2: elif n = 3 then 2: elif n = 4 then 3: else A316628(n-A316628(n-1)) + A316628(n-1-A316628(n-2)-A316628(n-2-A316628(n-2))): fi: end:

Formula

a(n+1)-a(n)=1 or 0.
a(n)/n -> C=(sqrt(5)-1)/(sqrt(5)+1).

A255671 Number of the column of the Wythoff array (A035513) that contains U(n), where U = A001950, the upper Wythoff sequence.

Original entry on oeis.org

2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 10, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2015

Keywords

Comments

All the terms are even, and every even positive integer occurs infinitely many times.
From Michel Dekking, Dec 09 2024 and Ad van Loon: (Start)
This sequence has a self-similarity property:
a(U(n)) = a(n) + 2 for all n.
Proof: it is known that the columns C_h of the Wythoff array are compound Wythoff sequences. For example: C_1 = L^2, C_2 = UL.
In general column C_h is equal to LU^{(h-1)/2} if h is odd, and to U^{h/2}L if h is even (see Theorem 10 in Kimberling’s 2008 paper in JIS).
Now if h is odd then the elements of column C_h are a subsequence of L, so no U(m) can occur in such a column.
If h is even then the elements of column C_h form a subsequence of U, and so many U(m) occur. Suppose that a(m) = h. Then U(U(m)) is an element of column UU^{h/2}L = U^{(h+2)/2}L. This implies a(U(m)) = a(m) +2. (End)

Examples

			Corner of the Wythoff array:
  1   2   3   5   8   13
  4   7   11  18  29  47
  6   10  16  26  42  68
  9   15  24  39  63  102
L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that
A255670 = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
		

Crossrefs

Programs

  • Mathematica
    z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2};
    f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z];
    g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}]  (* A035612 *)
    Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}]     (* A255670 *)
    Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)

Formula

a(n) = 2 if and only if n = L(j) for some j; otherwise, n = U(k) for some k.
a(n) = A255670(n) + 1 = A035612(A001950(n)).

A352538 Primes whose position in the Wythoff array is immediately followed by another prime in the next column.

Original entry on oeis.org

2, 3, 7, 19, 23, 29, 67, 97, 103, 107, 149, 181, 227, 271, 311, 353, 379, 433, 449, 563, 631, 719, 761, 883, 919, 941, 971, 997, 1049, 1087, 1223, 1291, 1297, 1427, 1447, 1453, 1531, 1601, 1627, 1699, 1753, 1831, 1861, 1877, 2039, 2207, 2213, 2239, 2269, 2281, 2287
Offset: 1

Views

Author

Michel Marcus, Mar 20 2022

Keywords

Examples

			The Wythoff array begins:
   1    2    3    5    8 ...
   4    7   11   18   29 ...
   6   10   16   26   42 ...
   ...
So 2, 3 and 7 are terms, since they are horizontally followed by 3, 5 and 11.
		

Crossrefs

Cf. A003603, A022342, A035612, A035513 (Wythoff array).
Cf. A352537 (next row and column), A352539 (next row).

Programs

  • PARI
    T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
    isokh(m) = {my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1))};
    lista(nn) = for (n=1, nn, if (isokh(n), print1(prime(n), ", ")));
    
  • PARI
    right(n) = n++; (sqrtint(5*n^2)+n-2)\2; \\ see A022342
    isokh(n) = isprime(right(n));
    lista(nn) = for (n=1, nn, my(p=prime(n)); if (isokh(p), print1(p, ", ")));

A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence.

Original entry on oeis.org

1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 9, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2015

Keywords

Comments

All the terms are odd, and every odd positive integer occurs infinitely many times.

Examples

			Corner of the Wythoff array:
  1   2   3   5   8   13
  4   7   11  18  29  47
  6   10  16  26  42  68
  9   15  24  39  63  102
L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that
this sequence = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
		

Crossrefs

Programs

  • Mathematica
    z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2};
    f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z];
    g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}]  (* A035612 *)
    Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}]     (* A255670 *)
    Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)

Formula

a(n) = A255671(n) - 1 = A035612(A000201(n)).
a(n) = 1 if and only if n = L(j) for some j; otherwise, n = U(k) for some k.

A268034 A268032 with repeated 1's removed.

Original entry on oeis.org

3, 5, 11, 3, 21, 3, 5, 43, 3, 5, 11, 3, 85, 3, 5, 11, 3, 21, 3, 5, 171, 3, 5, 11, 3, 21, 3, 5, 43, 3, 5, 11, 3, 341, 3, 5, 11, 3, 21, 3, 5, 43, 3, 5, 11, 3, 85, 3, 5, 11, 3, 21, 3, 5, 683, 3, 5, 11, 3, 21, 3, 5, 43, 3, 5
Offset: 1

Views

Author

Jeremy Gardiner, Jan 24 2016

Keywords

Comments

Records appear to be given by A001045 Jacobsthal numbers.
(a(n)-1)/2 appears to be A085358.
The terms between the A001045(n+3) are:
3
5
11
3,
21
3, 5,
43
3, 5, 11, 3,
85
3, 5, 11, 3, 21, 3, 5,
171
3, 5, 11, 3, 21, 3, 5, 43, 3, 5, 11, 3,
341
3, 5, 11, 3, 21, 3, 5, 43, 3, 5, 11, 3, 85, 3, 5, 11, 3, 21, 3, 5,
683
This gives the same sequence. Every column has the same number.
By rows, there are 0, 0, 1, 2, 4, 7, 12, 20, ... apparently = Fibonacci(n+1) - 1 = A000071 terms.
From Paul Curtz, Jan 26 2016: (Start)
a(n) is also in
0, 1, 1 0, 3, 0, 1, 5, 0, ... equivalent to A035614(n)
1, 1, 3, 1, 5, 1, 1, 11, 1, ... equivalent to A035612(n)
1, 3, 5, 1, 11, 1, 3, 21, 1, ... (compare to A268032)
3, 5, 11, 3, 21, 3, 5, 43, 3, ... a(n) (equivalent to a3(n) in A035612)
5, 11, 21, 5, 43, 5, 11, 85, 5, ...
etc.
Every vertical comes from A001045 (*).
Second row: first one removing all 0's.
Third row: second one removing a part of 1's respecting (*)
Fourth row: third one removing all 1's.
etc.
The offset 0 is homogeneous to these sequences. (End)

Examples

			A268032 begins 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 3, 1, 1, 1, 21, ... hence this sequence begins 3, 5, 11, 3, 21, ...
		

Crossrefs

Showing 1-10 of 13 results. Next