cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059426 First differences of A026273.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 31 2001

Keywords

Comments

Differences of ranks of "2 between two 1": 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5 8 5 8 8 5 8 ... Differences of ranks of "8 between two 5": 5 8 5 8 8 5 8 5 8 8 5 8 8 5 8 5 8 8 5...(self-generated?)
Is this A014675 shifted one place left (verified for 616 terms)? [R. J. Mathar, Oct 05 2008]
The answer to both questions is: yes. See the comments of A026273. - Michel Dekking, Mar 12 2018

A003622 The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
Offset: 1

Views

Author

Keywords

Comments

Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
{a(n)} is the unique monotonic sequence of positive integers such that {a(n)} and {b(n)}: b(n) = a(n) - n form a partition of the nonnegative integers. - Yifan Xie, Jan 25 2025

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
  • N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.

Crossrefs

Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003622 n = a003622_list !! (n-1)
    a003622_list = filter ((elem 1) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    A003622 := proc(n)
        n+floor(n*(1+sqrt(5))/2)-1 ;
    end proc: # R. J. Mathar, Jan 25 2015
    # Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
    # The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
    # Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
    read out1; read out2; b[0]:=b1: b[1]:=b2:
    w2:=(i,j,n)->b[i][b[j][n]];
    w3:=(i,j,k,n)->b[i][b[j][b[k][n]]];
    for i from 0 to 1 do
    lprint("name=",i);
    lprint([seq(b[i][n],n=1..100)]):
    od:
    for i from 0 to 1 do for j from 0 to 1 do
    lprint("name=",i,j);
    lprint([seq(w2(i,j,n),n=1..100)]);
    od: od:
    for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
    lprint("name=",i,j,k);
    lprint([seq(w3(i,j,k,n),n=1..100)]);
    od: od: od:
  • Mathematica
    With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *)
    Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)-1
    
  • PARI
    a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
    
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
    
  • Python
    from math import isqrt
    def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

A184117 Lower s-Wythoff sequence, where s(n) = 2n + 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124, 125, 126, 128, 129, 131, 132, 134, 135, 136, 138, 139, 141
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2011

Keywords

Comments

Suppose that s(n) is a nondecreasing sequence of positive integers. The lower and upper s(n)-Wythoff sequences, a and b, are introduced here. Define
a(1) = 1; b(1) = s(1) + a(1); and for n>=2,
a(n) = least positive integer not in {a(1),...,a(n-1),b(1),...,b(n-1)},
b(n) = s(n) + a(n).
Clearly, a and b are complementary. If s(n)=n, then
a=A000201, the lower Wythoff sequence, and
b=A001950, the upper Wythoff sequence.
A184117 is chosen to represent the class of s-Wythoff sequences for which s is an arithmetic sequence given by s(n) = kn - r. Such sequences (lower and upper) are indexed in the OEIS as shown here:
n+1....A026273...A026274
n......A000201...A001950 (the classical Wythoff sequences)
2n+1...A184117...A184118
2n.....A001951...A001952
2n-1...A136119...A184119
3n+1...A184478...A184479
3n.....A184480...A001956
3n-1...A184482...A184483
3n-2...A184484...A184485
4n+1...A184486...A184487
4n.....A001961...A001962
4n-1...A184514...A184515
The pattern continues for A184516 to A184531.
s-Wythoff sequences for choices of s other than arithmetic sequences include these:
A184419 and A184420 (s = lower Wythoff sequence)
A184421 and A184422 (s = upper Wythoff sequence)
A184425 and A184426 (s = triangular numbers)
A184427 and A184428 (s = squares)
A036554 and A003159 (invariant and limiting sequences).

Examples

			s=(3,5,7,9,11,13,...);
a=(1,2,3,5,6,8,...);
b=(4,7,10,14,17,21,...).
		

Crossrefs

Programs

  • Mathematica
    k=2; r=-1;
    mex:=First[Complement[Range[1,Max[#1]+1],#1]]&;
    s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];
    a[n_]:=a[n]=mex[Flatten[Table[{a[i],b[i]},{i,1,n-1}]]];
    Table[s[n],{n,30}]  (* s = A005408 except for initial 1 *)
    Table[a[n],{n,100}] (* a = A184117 *)
    Table[b[n],{n,100}] (* b = A184118 *)
  • PARI
    A184117_upto(N,s(n)=2*n+1,a=[1],U=a)={while(a[#a]1&&U[2]==U[1]+1,U=U[^1]);a=concat(a,U[1]+1));a} \\ M. F. Hasler, Jan 07 2019

Formula

a(n) = A184118(n) - s(n). - M. F. Hasler, Jan 07 2019

Extensions

Removed an incorrect g.f., Alois P. Heinz, Dec 14 2012

A026274 Greatest k such that s(k) = n, where s = A026272.

Original entry on oeis.org

3, 5, 8, 11, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 39, 42, 45, 47, 50, 52, 55, 58, 60, 63, 66, 68, 71, 73, 76, 79, 81, 84, 87, 89, 92, 94, 97, 100, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 128, 131, 134, 136, 139, 141, 144
Offset: 1

Views

Author

Keywords

Comments

This is the upper s-Wythoff sequence, where s(n)=n+1.
See comments at A026273.
Conjecture: This sequence consists precisely of those numbers without a 1 or 2 in their Zeckendorf representation. [In other words, numbers which are the sum of distinct nonconsecutive Fibonacci numbers greater than 2.] - Charles R Greathouse IV, Jan 28 2015
A Beatty sequence with complement A026273. - Robert G. Wilson v, Jan 30 2015
A035612(a(n)+1) = 1. - Reinhard Zumkeller, Jul 20 2015
From Michel Dekking, Mar 12 2018: (Start)
One has r*r*(n-2*r+3) = n*r^2 -2r^3+3*r^2 = (n+1)*r^2 -2, where r = (1+sqrt(5))/2.
So a(n) = floor((n+1)*r^2)-2, and we see that this sequence is simply the Beatty sequence of the square of the golden ratio, shifted spatially and temporally. In other words, if w = A001950 = 2,5,7,10,13,15,18,20,... is the upper Wythoff sequence, then a(n) = w(n+1) - 2.
(End)
From Michel Dekking, Apr 05 2020: (Start)
Proof of the conjecture by Charles R Greathouse IV.
Let Z(n) = d(L)...d(1)d(0) be the Zeckendorf expansion of n. Well-known is:
d(0) = 1 if and only if n = floor(k*r^2) - 1
for some integer k (see A003622).
Then the same characterization holds for n with d(1)d(0) = 01, since 11 does not appear in a Zeckendorf expansion. But such an n has predecessor n-1 which always has an expansion with d(1)d(0) = 00. Combined with my comment from March 2018, this proves the conjecture (ignoring n = 0). (End)
It appears that these are the integers m for which A007895(m+1) > A007895(m) where A007895(m) is the number of terms in Zeckendorf representation of m. - Michel Marcus, Oct 30 2020
This follows directly from Theorem 4 in my paper "Points of increase of the sum of digits function of the base phi expansion". - Michel Dekking, Oct 31 2020

Crossrefs

Programs

  • Haskell
    a026274 n = a026274_list !! (n-1)
    a026274_list = map (subtract 1) $ tail $ filter ((== 1) . a035612) [1..]
    -- Reinhard Zumkeller, Jul 20 2015
    
  • Mathematica
    r=(1+Sqrt[5])/2;
    a[n_]:=Floor[r*r*(n+2r-3)];
    Table[a[n],{n,200}]
    Table[Floor[GoldenRatio^2 (n+2*GoldenRatio-3)],{n,60}] (* Harvey P. Dale, Dec 23 2022 *)
  • PARI
    a(n)=my(w=quadgen(20),phi=(1+w)/2); phi^2*(n+2*phi-3)\1 \\ Charles R Greathouse IV, Nov 10 2021
    
  • Python
    from math import isqrt
    def A026274(n): return (n+1+isqrt(5*(n+1)**2)>>1)+n-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(r*r*(n+2r-3)), where r = (1+sqrt(5))/2 = A001622. [Corrected by Tom Edgar, Jan 30 2015]
a(n) = 3*n - floor[(n+1)/(1+phi)], phi = (1+sqrt(5))/2. - Joshua Tobin (tobinrj(AT)tcd.ie), May 31 2008
a(n) = A003622(n+1) - 1 for n>1 (conjectured). - Michel Marcus, Oct 30 2020
This conjectured formula follows directly from the formula a(n) = floor((n+1)*r^2)-2 in my Mar 12 2018 comment above. - Michel Dekking, Oct 31 2020

Extensions

Extended by Clark Kimberling, Jan 14 2011

A080746 Inverse Aronson transform of lower Wythoff sequence A000201.

Original entry on oeis.org

1, 4, 6, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 23, 25, 27, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 57, 59, 61, 62, 64, 65, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99
Offset: 1

Views

Author

Matthew Vandermast, Mar 08 2003

Keywords

Crossrefs

Union of A003622 and A035336, omitting 2. Cf. A000201, A080760.
Same as A026273 except for initial terms.

Formula

Consists of numbers [phi[phi*k]] (k >= 1) and [phi[phi^2*k]]-1 (k >= 2), where phi = (1+sqrt(5))/2. - N. J. A. Sloane, Mar 10 2003
Showing 1-5 of 5 results.