cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A246293 Numbers k such that sin(k) > sin(k+1).

Original entry on oeis.org

2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 33, 34, 35, 39, 40, 41, 46, 47, 48, 52, 53, 54, 58, 59, 60, 64, 65, 66, 67, 71, 72, 73, 77, 78, 79, 83, 84, 85, 90, 91, 92, 96, 97, 98, 102, 103, 104, 108, 109, 110, 111, 115, 116, 117, 121, 122, 123
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A246293, A246294, A246295, A246296 partition the nonnegative integers.
Numbers like 42, 86, 130, 199, 243, 287,.. are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A246294, A246295, A246296, A026309 (complement of A246293).

Programs

A026317 Nonnegative integers k such that |cos(k)| > |sin(k+1)|.

Original entry on oeis.org

0, 2, 3, 5, 6, 9, 12, 15, 18, 19, 21, 22, 24, 25, 27, 28, 31, 34, 37, 40, 41, 43, 44, 46, 47, 49, 50, 53, 56, 59, 62, 63, 65, 66, 68, 69, 71, 72, 75, 78, 81, 84, 85, 87, 88, 90, 91, 93, 94, 97, 100, 103, 106, 107, 109, 110, 112, 113, 115
Offset: 1

Views

Author

Keywords

Comments

The sequences A026317, A327136 and A327137 partition the nonnegative integers. - Clark Kimberling, Aug 23 2019
Requirement can be rewritten cos^2(k) > sin^2(k+1) => cos^2(k) > 1-cos^2(k+1) => cos^2(k+1) > 1-cos^2(k) => |cos(k+1)| > |sin(k)|. - R. J. Mathar, Sep 03 2019
These are also the numbers k such that sin(2k) < sin(2k+2).
Proof (Jean-Paul Allouche, Nov 14 2019):
cos^2(n) > sin^2(n+1) ;
Formulas for squares Abramowitz-Stegun 4.3.31 and 4.3.32:
1/2 + cos(2n)/2 > 1/2 - cos(2n+2) ;
cos(2n+2) + cos(2n) > 0 ;
Formulas for sums Abramowitz-Stegun 4.3.16 and 4.3.17:
cos(2n)*cos(2) - sin(2n)*sin(2) + cos(2n) > 0 ;
(1+cos(2))*cos(2n) > sin(2n)*sin 2;
Multiply both sides by 1-cos(2) which is >0:
(1-cos^2(2))*cos(2n) > (1-cos(2))*sin(2)*sin(2n) ;
sin^2(2)*cos(2n) > (1-cos(2))*sin(2)*sin(2n) ;
sin(2)*cos(2n) > (1-cos(2))*sin(2n) ;
(1-cos(2))*sin(2n) < cos(2n)*sin 2 ;
sin(2n) - sin(2n)*cos(2) < cos(2n)*sin(2);
sin(2n) < sin(2n)*cos(2)+cos(2n)*sin(2);
And backward application of Abramowitz-Stegun 4.3.16
sin(2n) < sin(2n+2) q.e.d.
Also nonnegative integers k such that cos(2k+1) > 0. Note that sin(2k+2) - sin(2k) = 2*cos(2k+1)*sin(1). - Jianing Song, Nov 16 2019

Crossrefs

Programs

  • Magma
    [k:k in [0..120]|Abs(Cos(k)) gt Abs(Sin(k+1))]; // Marius A. Burtea, Nov 14 2019
  • Mathematica
    Select[Range[0,120],Abs[Cos[#]]>Abs[Sin[#+1]]&] (* Harvey P. Dale, Mar 04 2013 *)

A246294 Numbers k such that sin(k) < sin(k+1) > sin(k+2).

Original entry on oeis.org

1, 7, 13, 19, 26, 32, 38, 45, 51, 57, 63, 70, 76, 82, 89, 95, 101, 107, 114, 120, 126, 133, 139, 145, 151, 158, 164, 170, 176, 183, 189, 195, 202, 208, 214, 220, 227, 233, 239, 246, 252, 258, 264, 271, 277, 283, 290, 296, 302, 308, 315, 321, 327, 334, 340
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A246293, A246294, A246295, A246296 partition the nonnegative integers.
Numbers like 42, 86, 130, 199, 243, 287,.. are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A246293, A246295, A246296, A026309 (complement of A246293).

Programs

A246295 Numbers k such that sin(k) < sin(k+1) < sin(k+2) > sin(k+3).

Original entry on oeis.org

0, 6, 12, 18, 25, 31, 37, 44, 50, 56, 62, 69, 75, 81, 88, 94, 100, 106, 113, 119, 125, 132, 138, 144, 150, 157, 163, 169, 175, 182, 188, 194, 201, 207, 213, 219, 226, 232, 238, 245, 251, 257, 263, 270, 276, 282, 289, 295, 301, 307, 314, 320, 326, 333, 339
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A246293, A246294, A246295, A246296 partition the nonnegative integers.
Numbers like 42, 86, 130, 199, 243, 287,.. are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A246293, A246294, A246296, A026309 (complement of A246293).

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[x]; t = Range[0, z];
    Select[t, f[#] > f[# + 1] &]  (* A246293 *)
    Select[t, f[#] < f[# + 1] > f[# + 2] &]  (* A246294 *)
    Select[t, f[#] < f[# + 1] < f[# + 2] > f[# + 3] &]  (* A246295 *)
    Select[t, f[#] < f[# + 1] < f[# + 2] < f[# + 3] > f[# + 4] &] (* A246296 *)

A327138 Numbers k such that cos(2k) < cos(2k+2).

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 15, 17, 18, 20, 21, 24, 27, 30, 33, 34, 36, 37, 39, 40, 42, 43, 46, 49, 52, 55, 56, 58, 59, 61, 62, 64, 65, 68, 71, 74, 77, 78, 80, 81, 83, 84, 86, 87, 90, 93, 96, 99, 100, 102, 103, 105, 106, 108, 109, 112, 115, 118, 121, 122, 124, 125
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A327138, A327139, A327140 partition the positive integers.
Conjecture: 2.07 < n*Pi - a(n) < 3.08 for n >= 1.

Examples

			(cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12,... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).
		

Crossrefs

Programs

A246296 Numbers k such that sin(k) < sin(k+1) < sin(k+2) < sin(k+3) > sin(k+4).

Original entry on oeis.org

5, 11, 17, 24, 30, 36, 43, 49, 55, 61, 68, 74, 80, 87, 93, 99, 105, 112, 118, 124, 131, 137, 143, 149, 156, 162, 168, 174, 181, 187, 193, 200, 206, 212, 218, 225, 231, 237, 244, 250, 256, 262, 269, 275, 281, 288, 294, 300, 306, 313, 319, 325, 332, 338, 344
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A246293, A246294, A246295, A246296 partition the nonnegative integers.
Numbers like 42, 86, 130, 199, 243, 287,.. are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A246293, A246294, A246295, A026309 (complement of A246293).

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[x]; t = Range[0, z];
    Select[t, f[#] > f[# + 1] &]  (* A246293 *)
    Select[t, f[#] < f[# + 1] > f[# + 2] &]  (* A246294 *)
    Select[t, f[#] < f[# + 1] < f[# + 2] > f[# + 3] &]  (* A246295 *)
    Select[t, f[#] < f[# + 1] < f[# + 2] < f[# + 3] > f[# + 4] &] (* A246296 *)

A246297 Numbers k such that sin(k) > sin(k+1) < sin(k+2).

Original entry on oeis.org

4, 10, 16, 23, 29, 35, 41, 48, 54, 60, 67, 73, 79, 85, 92, 98, 104, 111, 117, 123, 129, 136, 142, 148, 155, 161, 167, 173, 180, 186, 192, 198, 205, 211, 217, 224, 230, 236, 242, 249, 255, 261, 268, 274, 280, 286, 293, 299, 305, 312, 318, 324, 330, 337, 343
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A026309, A246297, A246298, A246299 partition the nonnegative integers.
Numbers like 20, 64, 108, 152,... are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A026309, A246298, A246299, A246293 (complement of A026309).

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[x]; t = Range[0, z];
    Select[t, f[#] < f[# + 1] &]  (* A026309 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A246297 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]  (* A246298 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] > f[# + 3] < f[# + 4] &] (* A246299 *)

Extensions

Corrected signs in NAME. - R. J. Mathar, May 18 2020

A246298 Numbers k such that sin(k) > sin(k+1) > sin(k+2) < sin(k+3).

Original entry on oeis.org

3, 9, 15, 22, 28, 34, 40, 47, 53, 59, 66, 72, 78, 84, 91, 97, 103, 110, 116, 122, 128, 135, 141, 147, 154, 160, 166, 172, 179, 185, 191, 197, 204, 210, 216, 223, 229, 235, 241, 248, 254, 260, 267, 273, 279, 285, 292, 298, 304, 311, 317, 323, 329, 336, 342
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A026309, A246297, A246298, A246299 partition the nonnegative integers.

Crossrefs

Cf. A246297, A246299, A246293 (complement of A026309).

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[x]; t = Range[0, z];
    Select[t, f[#] < f[# + 1] &]  (* A026309 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A246297 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]  (* A246298 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] > f[# + 3] < f[# + 4] &] (* A246299 *)
    Flatten[Position[Partition[Sin[Range[350]],4,1],?(#[[1]]>#[[2]]>#[[3]]<#[[4]]&),1,Heads->False]] (* _Harvey P. Dale, Aug 03 2017 *)
  • PARI
    q(n)=my(s0=sin(n),s1=sin(n+1),s2=sin(n+2),s3=sin(n+3));if( (s0>s1) && (s1>s2) && (s2Joerg Arndt, Aug 03 2017
    
  • PARI
    list(lim)=my(v=List(),u=vector(4,x,sin(x+2))); forstep(k=3,lim-3,4, u[4]=sin(k+3); if(u[1]>u[2]&&u[2]>u[3]&&u[3]u[3]&&u[3]>u[4]&&u[4]u[4]&&u[4]>u[1]&&u[1]u[1]&&u[1]>u[2]&&u[2]sin(k+1)&&sin(k+1)>sin(k+2)&&sin(k+2)Charles R Greathouse IV, Aug 03 2017
    
  • Python
    from sympy import sin
    def ok(n):
        s0, s1, s2, s3 = sin(n), sin(n + 1), sin(n + 2), sin(n + 3)
        return s0>s1 and s1>s2 and s2Indranil Ghosh, Aug 03 2017

Extensions

Name corrected by Harvey P. Dale, Aug 03 2017

A246299 Numbers k such that sin(k) > sin(k+1) > sin(k+2) > sin(k+3) < sin(k+4).

Original entry on oeis.org

2, 8, 14, 21, 27, 33, 39, 46, 52, 58, 65, 71, 77, 83, 90, 96, 102, 109, 115, 121, 127, 134, 140, 146, 153, 159, 165, 171, 178, 184, 190, 196, 203, 209, 215, 222, 228, 234, 240, 247, 253, 259, 266, 272, 278, 284, 291, 297, 303, 310, 316, 322, 328, 335, 341
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2014

Keywords

Comments

The sequences A026309, A246297, A246298, A246299 partition the nonnegative integers.
Numbers like 20, 64, 108, 152, 177, 221, 265, 309, ... are in none of these 4 sequences. - R. J. Mathar, May 18 2020

Crossrefs

Cf. A026309, A246297, A246298, A246293 (complement of A026309).

Programs

Extensions

Corrected signs in NAME. - R. J. Mathar, May 18 2020

A327139 Numbers k such that cos(2k) > cos(2k+2) < cos(2k+4).

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 45, 48, 51, 54, 57, 60, 63, 67, 70, 73, 76, 79, 82, 85, 89, 92, 95, 98, 101, 104, 107, 111, 114, 117, 120, 123, 126, 129, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 164, 167, 170, 173, 176, 180, 183
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A327138, A327139, A327140 partition the positive integers.

Crossrefs

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Cos[2 x]; t = Range[1, z];
    Select[t, f[#] < f[# + 1] &]    (* A327138 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A327139 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]   (* A327140 *)

Formula

(cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12,... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).
Showing 1-10 of 16 results. Next