A026352 a(n) = floor(n*tau) + n + 1 where tau is the golden ratio A001622.
1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 42, 45, 48, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 76, 79, 82, 84, 87, 90, 92, 95, 97, 100, 103, 105, 108, 110, 113, 116, 118, 121, 124, 126, 129, 131, 134, 137, 139, 142, 144
Offset: 0
Keywords
Links
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 9.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 8, 17.
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
- Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
- Ali Sada, Should A000201 and A026352 be cross-referenced?, Seqfan thread, Jun 2023.
Crossrefs
Programs
-
Mathematica
Table[Floor[GoldenRatio*n]+n+1,{n,0,60}] (* Harvey P. Dale, Aug 24 2021 *) cloitreH[j_, x_, y_, z_, w_ : 120] := Block[{c, k}, c[] := False; k = x; c[x] = True; {x}~Join~Reap[Do[If[c[n - j], k += y, k += z]; c[k] = True; Sow[k], {n, 2, w}] ][[-1, 1]] ]; cloitreH[1, 1, 2, 3] (* _Michael De Vlieger, Jul 28 2025 *)
-
PARI
a(n) = floor(n*(sqrt(5)+1)/2) + n + 1; \\ Michel Marcus, Sep 15 2016
-
Python
from math import isqrt def A026352(n): return (n+isqrt(5*n**2)>>1)+n+1 # Chai Wah Wu, Aug 25 2022
Formula
a(n) = A026351(n)+n. - R. J. Mathar, Jun 24 2025
Comments