A026424 Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.
2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 30, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- S. Ramanujan, Irregular numbers, J. Indian Math. Soc., 5 (1913), 105-106; Coll. Papers 20-21.
- Eric Weisstein's World of Mathematics, Prime Sums
- Index entries for sequences generated by sieves - _Reinhard Zumkeller_, Jul 01 2009
Crossrefs
Programs
-
Haskell
a026424 n = a026424_list !! (n-1) a026424_list = filter (odd . a001222) [1..] -- Reinhard Zumkeller, Oct 05 2011
-
Maple
isA026424 := proc(n) if type(numtheory[bigomega](n) ,'odd') then true; else false; end if; end proc: A026424 := proc(n) option remember; if n =1 then 2; else for a from procname(n-1)+1 do if isA026424(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, May 25 2017
-
Mathematica
Select[Range[2, 112], OddQ[Total[FactorInteger[#]][[2]]] &] (* T. D. Noe, May 07 2011 *) (* From version 7 on *) Select[Range[2, 112], LiouvilleLambda[#] == -1 &] (* Jean-François Alcover, Aug 19 2013 *) Select[Range[150],OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, Oct 04 2024 *)
-
PARI
is(n)=bigomega(n)%2 \\ Charles R Greathouse IV, Sep 16 2015
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A026424(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+1+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Apr 10 2025
Formula
Sum 1/a(n)^m = (zeta(m)^2-zeta(2m))/(2*zeta(m)), Dirichlet g.f. of A066829. - Ramanujan.
n>=2 is in sequence if n is not the product of two smaller elements. - David W. Wilson, May 06 2005
A001222(a(n)) mod 2 = 1. - Reinhard Zumkeller, Oct 05 2011
Comments