cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026424 Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 30, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112
Offset: 1

Views

Author

Keywords

Comments

Neither this sequence nor its complement (A028260) contains any infinite arithmetic progression. - Franklin T. Adams-Watters, Sep 05 2008
A066829(a(n)) = 1. - Reinhard Zumkeller, Jun 26 2009
These numbers can be generated by the sieving process described in A066829. - Reinhard Zumkeller, Jul 01 2009
Lexicographically earliest sequence of distinct nonnegative integers with no term being the product of any two not necessarily distinct terms. The equivalent sequence for addition/subtraction is A005408 (the odd numbers), for exponentiation is A259444, and for binary exclusive OR is A000069. - Peter Munn, Mar 16 2018
The equivalent lexicographically earliest sequence with no term being the product of any two distinct terms is A026416. A000028 is similarly the equivalent sequence when A059897 is used as multiplicative operator in place of standard integer multiplication. - Peter Munn, Mar 16 2019

Crossrefs

Cf. A008836, A028260 (complement).
Apart from initial term, same as A026422.
Cf. A026416 and cross-references therein.

Programs

  • Haskell
    a026424 n = a026424_list !! (n-1)
    a026424_list = filter (odd . a001222) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    isA026424 := proc(n)
        if type(numtheory[bigomega](n) ,'odd') then
            true;
        else
            false;
        end if;
    end proc:
    A026424 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA026424(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    Select[Range[2, 112], OddQ[Total[FactorInteger[#]][[2]]] &] (* T. D. Noe, May 07 2011 *)
    (* From version 7 on *) Select[Range[2, 112], LiouvilleLambda[#] == -1 &] (* Jean-François Alcover, Aug 19 2013 *)
    Select[Range[150],OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    is(n)=bigomega(n)%2 \\ Charles R Greathouse IV, Sep 16 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A026424(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+1+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 10 2025

Formula

Sum 1/a(n)^m = (zeta(m)^2-zeta(2m))/(2*zeta(m)), Dirichlet g.f. of A066829. - Ramanujan.
n>=2 is in sequence if n is not the product of two smaller elements. - David W. Wilson, May 06 2005
A001222(a(n)) mod 2 = 1. - Reinhard Zumkeller, Oct 05 2011
Union of A000040, A014612, A014614, A046308 etc. - R. J. Mathar, Jul 09 2012