A026581 Expansion of (1 + 2*x) / (1 - x - 4*x^2).
1, 3, 7, 19, 47, 123, 311, 803, 2047, 5259, 13447, 34483, 88271, 226203, 579287, 1484099, 3801247, 9737643, 24942631, 63893203, 163663727, 419236539, 1073891447, 2750837603, 7046403391, 18049753803, 46235367367, 118434382579, 303375852047, 777113382363
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4).
Crossrefs
Programs
-
GAP
a:=[1,3];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019
-
Magma
I:=[1,3]; [n le 2 select I[n] else Self(n-1) +4*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019
-
Mathematica
CoefficientList[Series[(1+2x)/(1-x-4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{1,4},{1,3},30] (* Harvey P. Dale, Aug 04 2015 *)
-
PARI
Vec((1+2*x)/(1-x-4*x^2) + O(x^30)) \\ Colin Barker, Dec 22 2016
-
Sage
((1+2*x)/(1-x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
Formula
G.f.: (1 + 2*x) / (1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), n>1.
a(n) = (2^(-1-n)*((1-sqrt(17))^n*(-5+sqrt(17)) + (1+sqrt(17))^n*(5+sqrt(17))))/sqrt(17). - Colin Barker, Dec 22 2016
Extensions
Edited by Ralf Stephan, Jul 20 2013
Comments