cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006131 a(n) = a(n-1) + 4*a(n-2), a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 5, 9, 29, 65, 181, 441, 1165, 2929, 7589, 19305, 49661, 126881, 325525, 833049, 2135149, 5467345, 14007941, 35877321, 91909085, 235418369, 603054709, 1544728185, 3956947021, 10135859761, 25963647845, 66507086889, 170361678269
Offset: 0

Views

Author

Keywords

Comments

Length-n words with letters {0,1,2,3,4} where no two consecutive letters are nonzero, see fxtbook link below. - Joerg Arndt, Apr 08 2011
Equals INVERTi transform of A063727: (1, 2, 8, 24, 80, 256, 832, ...). - Gary W. Adamson, Aug 12 2010
a(n) is equal to the permanent of the n X n Hessenberg matrix with 1's along the main diagonal, 2's along the superdiagonal and the subdiagonal, and 0's everywhere else. - John M. Campbell, Jun 09 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 5*a(n-2) equals the number of 5-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 1, 8, 1, 6, 8, 48, 2, 24, 6,120, 8, 12, 48, 24, 4,136, 24, 18, 6, ... - R. J. Mathar, Aug 10 2012
This is one of only two Lucas-type sequences whose 8th term is a square. The other one is A097705. - Michel Marcus, Dec 07 2012
Numerators of stationary probabilities for the M2/M/1 queue. In this queue, customers arrives in groups of 2. Intensity of arrival = 1. Service rate = 4. There is only one server and an infinite queue. - Igor Kleiner, Nov 02 2018
Number of 4-compositions of n+2 with 1 not allowed as a part; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From M. Eren Kesim, May 13 2021: (Start)
a(n) is equal to the number of n-step walks from a universal vertex to another (itself or the other) on the diamond graph. It is also equal to the number of (n+1)-step walks from vertex A to vertex B on the graph below.
B--C
| /|
|/ |
A--D
(End)
From Wolfdieter Lang, Jan 03 2024: (Start)
This sequence {a(n-1)}, with a(-1) = 0, appears in the formula for powers of phi17 := (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): phi17^n = A052923(n) + a(n-1)*phi17, for n >= 0.
Limit_{n->oo} a(n+1)/a(n) = phi17. (End)

Examples

			G.f. = 1 + x + 5*x^2 + 9*x^3 + 29*x^4 + 65*x^5 + 181*x^6 + 441*x^7 + 1165*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+4*Self(n-2): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A006131:=-1/(-1+z+4*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    seq( simplify((2/I)^n*ChebyshevU(n, I/4)), n=0..30); # G. C. Greubel, Dec 26 2019
  • Mathematica
    m = 16; f[n_] = Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]; N[%] (* Roger L. Bagula, Nov 21 2008 *)
    a[n_]:=(MatrixPower[{{1,4},{1,0}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{1, 4}, {1, 1}, 29] (* Jean-François Alcover, Sep 25 2017 *)
    Table[2^n*Fibonacci[n+1, 1/2], {n,0,30}] (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    a(n)=([0,1; 4,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    vector(31, n, (2/I)^(n-1)*polchebyshev(n-1, 2, I/4) ) \\ G. C. Greubel, Dec 26 2019
    
  • Python
    def A006131_list(n):
        list = [1, 1] + [0] * (n - 2)
        for i in range(2, n):
            list[i] = list[i - 1] + 4 * list[i - 2]
        return list
    print(A006131_list(29)) # M. Eren Kesim, Jul 19 2021
  • Sage
    [lucas_number1(n,1,-4) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: 1/(1 - x - 4*x^2).
a(n) = (((1+sqrt(17))/2)^(n+1) - ((1-sqrt(17))/2)^(n+1))/sqrt(17).
a(n+1) = Sum_{k=0..ceiling(n/2)} 4^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*2^(n-k)/2. - Paul Barry, Aug 28 2005
a(n) = A102446(n)/2. - Zerinvary Lajos, Jul 09 2008
a(n) = Sum_{k=0..n} A109466(n,k)*(-4)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = Product_{k=1..floor((n - 1)/2)} (1 + 16*cos(k*Pi/n)^2). - Roger L. Bagula, Nov 21 2008
Limiting ratio a(n+1)/a(n) is (1 + sqrt(17))/2 = 2.561552812... - Roger L. Bagula, Nov 21 2008
The fraction b(n) = a(n)/2^n satisfies b(n) = 1/2 b(n-1) + b(n-2); g.f. 1/(1-x/2-x^2); b(n) = (( (1+sqrt(17))/4 )^(n+1) - ( (1-sqrt(17))/4 )^(n+1))*2/sqrt(17). - Franklin T. Adams-Watters, Nov 30 2009
G.f.: G(0)/(2-x), where G(k) = 1 + 1/(1 - x*(17*k-1)/(x*(17*k+16) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + 4*x)/( x*(4*k+3 + 4*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(k+1 + 4*x)/( x*(k+3/2 + 4*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
G.f.: 1 / (1 - x / (1 - 4*x / (1 + 4*x))). - Michael Somos, Sep 15 2013
a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*17^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
a(n) = 2^n*Fibonacci(n+1, 1/2) = (2/i)^n*ChebyshevU(n, i/4). - G. C. Greubel, Dec 26 2019
E.g.f.: exp(x/2)*(sqrt(17)*cosh(sqrt(17)*x/2) + sinh(sqrt(17)*x/2))/sqrt(17). - Stefano Spezia, Dec 27 2019
a(n) = A344236(n) + A344261(n). - M. Eren Kesim, May 13 2021
With an initial 0 prepended, the sequence [0, 1, 1, 5, 9, 29, 65, ...] satisfies the congruences a(n*p^k) == e*a(n*p^(k-1)) (mod p^k) for positive integers k and n and all primes p, where e = +1 for the primes p listed in A296938, e = 0 when p = 17, otherwise e = -1. - Peter Bala, Dec 28 2022
a(n) = A052923(n+2)/4. - Wolfdieter Lang, Jan 03 2024
From Peter Bala, Jun 27 2025: (Start)
The following products telescope:
Product_{k >= 0} (1 + 4^k/a(2*k+1)) = 1 + sqrt(17).
Product_{k >= 1} (1 - 4^k/a(2*k+1)) = 1/18 * (1 + sqrt(17)).
Product_{k >= 0} (1 + (-4)^k/a(2*k+1)) = (1/17) * (17 + sqrt(17)).
Product_{k >= 1} (1 - (-4)^k/a(2*k+1)) = (1/18) * (17 + sqrt(17)). (End)

Extensions

More terms from Roger L. Bagula, Sep 26 2006

A026597 Expansion of (1+x)/(1-x-4*x^2).

Original entry on oeis.org

1, 2, 6, 14, 38, 94, 246, 622, 1606, 4094, 10518, 26894, 68966, 176542, 452406, 1158574, 2968198, 7602494, 19475286, 49885262, 127786406, 327327454, 838473078, 2147782894, 5501675206, 14092806782, 36099507606, 92470734734
Offset: 0

Views

Author

Keywords

Comments

This sequence can generated by the following formula: a(n) = a(n-1) + 4*a(n-2) when n > 2; a[1] = 1, a[2] = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 21 2004
An elephant sequence, see A175654 and A175655. For the corner squares just one A[5] vector, with decimal value 325, leads to the sequence given above. For the central square this vector leads to a companion sequence that is 4 times this very same sequence with n >= -1. - Johannes W. Meijer, Aug 15 2010
Equals INVERTi transform of A180168. - Gary W. Adamson, Aug 14 2010
Start with a single cell at coordinates (0, 0), then iteratively subdivide the grid into 2 X 2 cells and remove the cells that have one '1' in their modulo 3 coordinates. a(n) is the number of cells after n iterations. Cell configuration converges to a fractal with approximate dimension 1.357. - Peter Karpov, Apr 20 2017
Also, the number of walks of length n starting at vertex 1 in the graph with 4 vertices and edges {{0,1}, {0,2}, {0,3}, {1,2}, {2,3}}. - Sean A. Irvine, Jun 02 2025

Crossrefs

Programs

  • Magma
    [n le 2 select n else Self(n-1) + 4*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 08 2021
  • Mathematica
    LinearRecurrence[{1,4},{1,2},40] (* Harvey P. Dale, Nov 28 2011 *)
  • Sage
    [(2*i)^n*( chebyshev_U(n, -i/4) - (i/2)*chebyshev_U(n-1, -i/4) ) for n in (0..40)] # G. C. Greubel, Dec 08 2021
    

Formula

G.f.: (1+x)/(1-x-4*x^2).
a(n) = T(n,0) + T(n,1) + ... + T(n,2*n), T given by A026584.
a(n) = Sum_{k=0..n} binomial(floor((2*n-k-1)/2), n-k)*2^k. - Paul Barry, Feb 11 2005
a(n) = A006131(n) + A006131(n-1), n >= 1. - R. J. Mathar, Oct 20 2006
a(n) = Sum_{k=0..n} binomial(floor((2*n-k)/2),n-k)*4^floor(k/2). - Paul Barry, Feb 02 2007
Inverse binomial transform of A007482: (1, 3, 11, 39, 139, 495, ...). - Gary W. Adamson, Dec 04 2007
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*3^(n+1-k). - Philippe Deléham, Jan 04 2008
a(n) = (1/2 + 3*sqrt(17)/34)*(1/2 + sqrt(17)/2)^n + (1/2 - 3*sqrt(17)/34)*(1/2 - sqrt(17)/2)^n. - Antonio Alberto Olivares, Jun 07 2011
a(n) = (2*i)^n*( chebyshevU(n, -i/4) - (i/2)*chebyshevU(n-1, -i/4) ). - G. C. Greubel, Dec 08 2021
E.g.f.: exp(x/2)*(17*cosh(sqrt(17)*x/2) + 3*sqrt(17)*sinh(sqrt(17)*x/2))/17. - Stefano Spezia, Jan 31 2023

Extensions

Better name from Ralf Stephan, Jul 14 2013

A026599 a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).

Original entry on oeis.org

1, 3, 9, 23, 61, 155, 401, 1023, 2629, 6723, 17241, 44135, 113101, 289643, 742049, 1900623, 4868821, 12471315, 31946601, 81831863, 209618269, 536945723, 1375418801, 3523201695, 9024876901, 23117683683, 59217191289, 151687926023
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) -4*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 15 2021
    
  • Mathematica
    LinearRecurrence[{2,3,-4}, {1,3,9}, 40] (* G. C. Greubel, Dec 15 2021 *)
  • Sage
    [( (1+x)/((1-x)*(1-x-4*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 15 2021

Formula

G.f.: (1+x)/((1-x)*(1-x-4*x^2)). - Ralf Stephan, Feb 04 2004
From Klaus Purath, Feb 02 2021: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3).
a(n) = Sum_{j=0..n} A026597(j). (End)
a(n) = 2^n*(Fibonacci(n+2, 1/2) + Fibonacci(n+1, 1/2)) - 1/2. - G. C. Greubel, Dec 15 2021

A382683 Expansion of (1-x^2) / (1-x-3*x^2+x^3).

Original entry on oeis.org

1, 1, 3, 5, 13, 25, 59, 121, 273, 577, 1275, 2733, 5981, 12905, 28115, 60849, 132289, 286721, 622739, 1350613, 2932109, 6361209, 13806923, 29958441, 65018001, 141086401, 306181963, 664423165, 1441882653, 3128970185, 6790194979, 14735222881, 31976837633
Offset: 0

Views

Author

Sean A. Irvine, Jun 02 2025

Keywords

Comments

The number of walks of length n in the 4-vertex graph {{0,1}, {1,2}, {1,3}, {2,3}} starting at vertex 0 (see Example).
Also, a(n+1) is the number of such walks in the same graph starting at vertex 1.

Examples

			Consider walks starting at 0 in the following graph:
      2
     /|
  0-1 |
     \|
      3
The 5 walks of length 3 are 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, and 0-1-3-2.
		

Crossrefs

Cf. A087640 (walks starting at 2).
Cf. A000079 (missing edge {0,1}), A108411 (missing edge {2,3}), A026581 (adding edge {0,2}), A000244 (K4).

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|3|1>>^n. <<1,1,3>>)[1,1]:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    LinearRecurrence[{1,3,-1},{1,1,3},33] (* or *) CoefficientList[Series[ (1-x^2) / (1-x-3*x^2+x^3),{x,0,32}],x] (* James C. McMahon, Jun 02 2025 *)

Formula

a(n) = A052973(n) + A052973(n-1). a(n) = A087640(n+1) - A087640(n). - R. J. Mathar, Jun 03 2025

A052923 Expansion of (1-x)/(1 - x - 4*x^2).

Original entry on oeis.org

1, 0, 4, 4, 20, 36, 116, 260, 724, 1764, 4660, 11716, 30356, 77220, 198644, 507524, 1302100, 3332196, 8540596, 21869380, 56031764, 143509284, 367636340, 941673476, 2412218836, 6178912740, 15827788084, 40543439044, 103854591380
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A006131.
This sequence {a(n)} appears in the formula for powers of c = (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): c^n = a(n) + A006131(n-1)*c. This is also valid for positive powers of 1/c = (-1 + sqrt(17)) /8. See the formula below and in A006131 in terms of Chebyshev or Fibonacci polynomials. - Wolfdieter Lang, Nov 27 2023

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
    a := n -> -(2*I)^n*ChebyshevU(n-2, -I/4):
    seq(simplify(a(n)), n = 0..28);  # Peter Luschny, Dec 03 2023
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -x -4*x^2) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Z),Z,Union(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((1-x)/(1 -x -4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    LinearRecurrence[{1,4}, {1,0}, 30] (* G. C. Greubel, Oct 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1 -x -4*x^2)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052923_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1 -x -4*x^2)).list()
    A052923_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1-x)/(1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), with a(0)=1, a(1)=0.
a(n) = Sum_{alpha=RootOf(-1+z+4*z^2)} (1/17)*(-1+9*alpha)*alpha^(-1-n).
If p[1]=0, and p[i]=4, ( i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = 4*A006131(n-2), with A006131(-2) = 1/4 and A006131(-1) = 0.
a(n) = -(-2*i)^n*S(n-2, i/2), with i = sqrt(-1), and the S-Chebyshev polynomials (see A049310). S(-n, x) = -S(n-2, x). The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x). (End)

Extensions

More terms from James Sellers, Jun 06 2000

A193734 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(2x+1)^n and q(n,x)=(x+2)^n.

Original entry on oeis.org

1, 1, 2, 1, 6, 8, 1, 10, 32, 32, 1, 14, 72, 160, 128, 1, 18, 128, 448, 768, 512, 1, 22, 200, 960, 2560, 3584, 2048, 1, 26, 288, 1760, 6400, 13824, 16384, 8192, 1, 30, 392, 2912, 13440, 39424, 71680, 73728, 32768, 1, 34, 512, 4480, 25088, 93184, 229376, 360448, 327680, 131072
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,0,0,0,0,0,0,0,...) DELTA (2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
  1;
  1,  2;
  1,  6,   8;
  1, 10,  32,  32;
  1, 14,  72, 160, 128;
  1, 18, 128, 448, 768, 512;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193734
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return T(n-1, k) + 4*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 2; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]      (* A193735 *)
    (* Second program *)
    T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[n<2, k+1, T[n-1,k] +4*T[n-1,k-1]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//TableForm (* G. C. Greubel, Nov 19 2023 *)
  • SageMath
    def T(n, k): # T = A193734
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return T(n-1, k) +4*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 19 2023

Formula

T(n,k) = 4*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1 - 2*x*y)/(1 - x - 4*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 19 2023: (Start)
T(n, n) = A081294(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A026581(n-1) + (1/2)*[n=0]. (End)

A026583 a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=2n, T given by A026568.

Original entry on oeis.org

1, 4, 11, 30, 77, 200, 511, 1314, 3361, 8620, 22067, 56550, 144821, 371024, 950311, 2434410, 6235657, 15973300, 40915931, 104809134, 268472861, 687709400, 1761600847, 4512438450, 11558841841, 29608595644, 75843963011
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006131, A026581 (first differences).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-4},{1,4,11},40] (* Harvey P. Dale, Apr 03 2024 *)

Formula

G.f.: (1+2x)/[(1-x)(1-x-4x^2)]. - Ralf Stephan, Feb 04 2004 (follows from first comment in A026581)

A103279 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 3, 1, 3, 8, 1, 3, 9, 22, 1, 3, 10, 27, 60, 1, 3, 11, 34, 81, 164, 1, 3, 12, 43, 116, 243, 448, 1, 3, 13, 54, 171, 396, 729, 1224, 1, 3, 14, 67, 252, 683, 1352, 2187, 3344, 1, 3, 15, 82, 365, 1188, 2731, 4616, 6561, 9136, 1, 3, 16, 99, 516, 2019, 5616, 10923, 15760
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1]; Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,1] is equivalent to the recursion a(1) = 1, a(2) = 3, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
1,
3,
N + 8,
N^2 + 4*N + 22,
N^3 + 4*N^2 + 16*N + 60,
N^4 + 4*N^3 + 18*N^2 + 56*N + 164,
N^5 + 4*N^4 + 20*N^3 + 68*N^2 + 188*N + 448,
N^6 + 4*N^5 + 22*N^4 + 80*N^3 + 248*N^2 + 608*N + 1224,
N^7 + 4*N^6 + 24*N^5 + 92*N^4 + 312*N^3 + 864*N^2 + 1920*N + 3344,
N^8 + 4*N^7 + 26*N^6 + 104*N^5 + 380*N^4 + 1152*N^3 + 2928*N^2 + 5952*N + 9136,
etc.

Examples

			Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
		

Crossrefs

Cf. A103280 (for (M^n)[1, 2]), A028859 (for N=0), A000244 (for N=1), A007052 (for N=2), A007583 (for N=3), A083881 (for N=4), A026581 (for N=-1), A026532 (for N=-2), A026568.

Programs

  • PARI
    T11(N, n) = if(n==1,1,if(n==2,3,(N+2)*r1(N,n-1)-(2*N-2)*r1(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T11(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=3, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A123486 Riordan array (1/(1-2*x), x/(1-4*x^2)).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 8, 2, 1, 16, 16, 12, 2, 1, 32, 48, 24, 16, 2, 1, 64, 96, 96, 32, 20, 2, 1, 128, 256, 192, 160, 40, 24, 2, 1, 256, 512, 640, 320, 240, 48, 28, 2, 1, 512, 1280, 1280, 1280, 480, 336, 56, 32, 2, 1, 1024, 2560, 3840, 2560, 2240, 672, 448, 64, 36, 2, 1
Offset: 0

Views

Author

Paul Barry, Sep 30 2006

Keywords

Comments

Row sums are A026581. Diagonal sums are A026383.

Examples

			Number triangle begins
1;
2, 1;
4, 2, 1;
8, 8, 2, 1;
16, 16, 12, 2, 1;
32, 48, 24, 16, 2, 1;
		

Programs

  • Mathematica
    Table[Binomial[Floor[(n + k)/2], k]*2^(n - k), {n, 0, 49}, {k, 0,
       n}] // Flatten (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(floor((n+k)/2),k)*2^(n-k), ", "))) \\ G. C. Greubel, Oct 13 2017

Formula

Number triangle T(n,k) = C(floor((n+k)/2), k) * 2^(n-k).
T(n,k) = T(n-1,k-1) + 4*T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 20 2014

Extensions

Terms a(46) onward added by G. C. Greubel, Oct 14 2017

A153341 Triangle read by rows, A065941 * A007318.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 5, 8, 5, 1, 8, 17, 15, 6, 1, 13, 35, 41, 25, 8, 1, 21, 68, 98, 78, 36, 9, 1, 34, 129, 222, 220, 135, 51, 11, 1, 55, 239, 477, 562, 425, 210, 66, 12, 1, 89, 436, 991, 1355, 1222, 751, 314, 86, 14, 1, 144, 785, 2001, 3110, 3248, 2373, 1225, 440, 105, 15, 1, 233, 1399, 3953, 6883, 8171, 6923, 4263, 1905, 605, 130, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 24 2008

Keywords

Comments

Row sums = A026581: (1, 3, 7, 19, 47, 123,...)

Examples

			First few rows of the triangle =
1;
2, 1;
3, 3, 1;
5, 8, 5, 1;
8, 17, 15, 6, 1;
13, 35, 41, 25, 8, 1;
21, 68, 98, 78, 36, 9, 1;
34, 129, 222, 220, 135, 51, 11, 1;
55, 239, 477, 562, 425, 210, 66, 12, 1;
89, 436, 991, 1355, 1222, 751, 314, 86, 14, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A065941 * Pascal's triangle.

Extensions

a(37) = 239 corrected and more terms from Georg Fischer, May 29 2023
Showing 1-10 of 10 results.