cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026597 Expansion of (1+x)/(1-x-4*x^2).

Original entry on oeis.org

1, 2, 6, 14, 38, 94, 246, 622, 1606, 4094, 10518, 26894, 68966, 176542, 452406, 1158574, 2968198, 7602494, 19475286, 49885262, 127786406, 327327454, 838473078, 2147782894, 5501675206, 14092806782, 36099507606, 92470734734
Offset: 0

Views

Author

Keywords

Comments

This sequence can generated by the following formula: a(n) = a(n-1) + 4*a(n-2) when n > 2; a[1] = 1, a[2] = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 21 2004
An elephant sequence, see A175654 and A175655. For the corner squares just one A[5] vector, with decimal value 325, leads to the sequence given above. For the central square this vector leads to a companion sequence that is 4 times this very same sequence with n >= -1. - Johannes W. Meijer, Aug 15 2010
Equals INVERTi transform of A180168. - Gary W. Adamson, Aug 14 2010
Start with a single cell at coordinates (0, 0), then iteratively subdivide the grid into 2 X 2 cells and remove the cells that have one '1' in their modulo 3 coordinates. a(n) is the number of cells after n iterations. Cell configuration converges to a fractal with approximate dimension 1.357. - Peter Karpov, Apr 20 2017
Also, the number of walks of length n starting at vertex 1 in the graph with 4 vertices and edges {{0,1}, {0,2}, {0,3}, {1,2}, {2,3}}. - Sean A. Irvine, Jun 02 2025

Crossrefs

Programs

  • Magma
    [n le 2 select n else Self(n-1) + 4*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 08 2021
  • Mathematica
    LinearRecurrence[{1,4},{1,2},40] (* Harvey P. Dale, Nov 28 2011 *)
  • Sage
    [(2*i)^n*( chebyshev_U(n, -i/4) - (i/2)*chebyshev_U(n-1, -i/4) ) for n in (0..40)] # G. C. Greubel, Dec 08 2021
    

Formula

G.f.: (1+x)/(1-x-4*x^2).
a(n) = T(n,0) + T(n,1) + ... + T(n,2*n), T given by A026584.
a(n) = Sum_{k=0..n} binomial(floor((2*n-k-1)/2), n-k)*2^k. - Paul Barry, Feb 11 2005
a(n) = A006131(n) + A006131(n-1), n >= 1. - R. J. Mathar, Oct 20 2006
a(n) = Sum_{k=0..n} binomial(floor((2*n-k)/2),n-k)*4^floor(k/2). - Paul Barry, Feb 02 2007
Inverse binomial transform of A007482: (1, 3, 11, 39, 139, 495, ...). - Gary W. Adamson, Dec 04 2007
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*3^(n+1-k). - Philippe Deléham, Jan 04 2008
a(n) = (1/2 + 3*sqrt(17)/34)*(1/2 + sqrt(17)/2)^n + (1/2 - 3*sqrt(17)/34)*(1/2 - sqrt(17)/2)^n. - Antonio Alberto Olivares, Jun 07 2011
a(n) = (2*i)^n*( chebyshevU(n, -i/4) - (i/2)*chebyshevU(n-1, -i/4) ). - G. C. Greubel, Dec 08 2021
E.g.f.: exp(x/2)*(17*cosh(sqrt(17)*x/2) + 3*sqrt(17)*sinh(sqrt(17)*x/2))/17. - Stefano Spezia, Jan 31 2023

Extensions

Better name from Ralf Stephan, Jul 14 2013