A026794 Triangular array T read by rows: T(n,k) = number of partitions of n in which least part is k, 1<=k<=n.
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 1, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 2, 1, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 1, 22, 4, 2, 1, 0, 0, 0, 0, 1, 30, 7, 2, 1, 1, 0, 0, 0, 0, 1, 42, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
T(12,3) = 4 because we have [9,3], [6,3,3], [5,4,3] and [3,3,3,3]. - Edited by _Bob Selcoe_, Sep 03 2016 Triangle starts: 1; 1, 1; 2, 0, 1; 3, 1, 0, 1; 5, 1, 0, 0, 1; 7, 2, 1, 0, 0, 1; 11, 2, 1, 0, 0, 0, 1; 15, 4, 1, 1, 0, 0, 0, 1; 22, 4, 2, 1, 0, 0, 0, 0, 1; 30, 7, 2, 1, 1, 0, 0, 0, 0, 1; 42, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1; 56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1; 77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1; 101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1; 135, 24, 9, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Kevin Brown, On Euler's Pentagonal Theorem, 1994-2008.
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g.
- Johannes W. Meijer, Euler's ship on the Pentagonal Sea, pdf and jpg.
- J. W. Meijer and M. Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No. 1, December 2008. pp. 176-187.
- Tilman Piesk, First 50 rows and illustrations of columns n = 2, 3, 4, 5, 6, 7, 8. a(n, k) is the number of gray fields in row n of table k.
Crossrefs
Row sums give A000041.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. - Jason Kimberley, Feb 05 2012
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: this sequence (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 05 2012
Programs
-
Maple
g:=sum(t^i*x^i/product(1-x^j,j=i..30),i=1..30): gser:=simplify(series(g,x=0,19)): for n from 1 to 15 do P[n]:=coeff(gser,x^n) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # Emeric Deutsch, Feb 19 2006 nmax:=13; for n from 1 to nmax do T(n,n):=1 od: for n from 1 to nmax do for k from floor(n/2)+1 to n-1 do T(n,k):=0 od: od: for n from 2 to nmax do for k from 1 to floor(n/2) do T(n,k):=sum(T(n-k,i),i=k..n-k) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010 nmax:=13; with(combinat): for n from 1 to nmax do for k from n+1 to nmax do T(n,k):=0 od: od: for n from 1 to nmax do T(n,1):=numbpart(n-1) od: for n from 1 to nmax do T(n,n):=1 od: for n from 2 to nmax do for k from 2 to n-1 do T(n,k) := T(n-1,k-1) - T(n-k,k-1) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010 # p:= (f, g)-> zip((x,y)-> x+y, f, g, 0): b:= proc(n, i) option remember; local h; h:= `if`(n=i and i>0, [0$(i-1), 1], []); `if`(i<1, h, p(p(h, b(n, i-1)), `if`(n b(n, n)[]: seq(T(n), n=1..14); # Alois P. Heinz, Mar 28 2012
-
Mathematica
t[n_, k_] /; k<1 || k>n = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = Sum[t[n-k, i], {i, k, n-k}]; Flatten[ Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, May 11 2012, after PARI *)
-
PARI
{T(n, k) = if( k<1 || k>n, 0, if( n==k, 1, sum(i=k, n-k, T(n-k, i))))} \\ Michael Somos, Feb 06 2003
-
PARI
A026794(n,k)=#select(p->p[1]==k,partitions(n,[k,n])) \\ For illustration: Creates the list of all partitions of n with smallest part equal to k. - M. F. Hasler, Jun 14 2018
Formula
T(n, k) = sum{T(n-k, i), k<=i<=n-k} for k=1, 2, ..., m, T(n, k)=0 for k=m+1, ..., n-1, where m=floor(n/2); T(n, n)=1 for n >= 1.
G.f.: G(t,x)=sum(t^i*x^i/product(1-x^j, j=i..infinity), i=1..infinity). - Emeric Deutsch, Feb 19 2006
G.f.: Sum_{k>=1} tx^k/(1-tx^k)/product(1-x^j,j=1..k-1). - Emeric Deutsch, Mar 13 2006
T(n,k) = T(n-1,k-1) - T(n-k,k-1) for n>=2 and 2<=k<=(n-1) with T(n,1) = A000041(n-1), T(n,n) = 1 for n>=1 and T(n,k) = 0 for k>n. - Johannes W. Meijer, Jun 21 2010
T(k,k) = 1 and T(n,1) = row sum (n-1); thus Meijer's 2010 formula generates the triangle without a priori reference to A000041 (the partition sequence). - Bob Selcoe, Sep 03 2016
Extensions
More terms from Emeric Deutsch, Feb 19 2006
Comments