cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026796 Number of partitions of n in which the least part is 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510, 5237, 6095, 7056, 8182, 9465, 10945, 12625
Offset: 0

Views

Author

Keywords

Comments

Let b(k) be the number of partitions of k for which twice the number of ones is the number of parts, k = 0, 1, 2, ... . Then a(n+4) = b(n), n = 0, 1, 2, ... (conjectured). - George Beck, Aug 19 2017

Crossrefs

Essentially the same sequence as A008483.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), this sequence (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: this sequence (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^3/(&*[1-x^(m+3): m in [0..70]]) )); // G. C. Greubel, Nov 02 2019
    
  • Maple
    seq(coeff(series(x^3/mul(1-x^(m+3), m=0..65), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Nov 02 2019
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min@p==3], {n, 0, 60}] (* George Beck Aug 19 2017 *)
    CoefficientList[Series[x^3/QPochhammer[x^3, x], {x,0,60}], x] (* G. C. Greubel, Nov 02 2019 *)
  • PARI
    a(n) = numbpart(n-3) - numbpart(n-4) - numbpart(n-5) + numbpart(n-6); \\ Michel Marcus, Aug 20 2014
    
  • PARI
    x='x+O('x^66); Vecrev(Pol(x^3*(1-x)*(1-x^2)/eta(x))) \\ Joerg Arndt, Aug 22 2014
    
  • Sage
    def A026796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3/product((1-x^(m+3)) for m in (0..65)) ).list()
    A026796_list(60) # G. C. Greubel, Nov 02 2019

Formula

G.f.: x^3 / Product_{m>=3} (1 - x^m).
a(n) = p(n-3) - p(n-4) - p(n-5) + p(n-6), where p(n) = A000041(n). - Bob Selcoe, Aug 07 2014
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(3*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Michel Marcus, Aug 20 2014
a(0) = 0 prepended by Joerg Arndt, Aug 22 2014