cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A027024 a(n) = T(n,n+2), T given by A027023.

Original entry on oeis.org

1, 5, 13, 27, 53, 101, 189, 351, 649, 1197, 2205, 4059, 7469, 13741, 25277, 46495, 85521, 157301, 289325, 532155, 978789, 1800277, 3311229, 6090303, 11201817, 20603357, 37895485, 69700667, 128199517, 235795677, 433695869
Offset: 2

Views

Author

Keywords

Crossrefs

Pairwise sums of A027053.

Programs

  • GAP
    a:=[1,5,13,27];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
    
  • Maple
    seq(coeff(series(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2..35); # G. C. Greubel, Nov 04 2019
  • Mathematica
    Drop[CoefficientList[Series[x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), {x, 0, 35}], x], 2] (* or *) LinearRecurrence[{2,0,0,-1}, {1,5,13,27}, 35] (* G. C. Greubel, Nov 04 2019 *)
  • PARI
    my(x='x+O('x^35)); Vec(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
    
  • Sage
    def A027024_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) ).list()
    a=A027024_list(35); a[2:] # G. C. Greubel, Nov 04 2019
    

Formula

G.f.: x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)).
a(n) = a(n-1) + a(n-2) + a(n-3) + 8, for n>4. - Greg Dresden, Feb 09 2020
a(n) = A000213(n+2)-4. - R. J. Mathar, Jun 24 2020

A027026 a(n) = T(n,n+4), T given by A027023.

Original entry on oeis.org

1, 25, 85, 215, 477, 985, 1949, 3755, 7113, 13329, 24805, 45959, 84917, 156625, 288573, 531323, 977873, 1799273, 3310133, 6089111, 11200525, 20601961, 37893981, 69699051, 128197785, 235793825, 433693893, 797688967, 1467180389
Offset: 4

Views

Author

Keywords

Programs

  • GAP
    a:=[1,25,85,215,477,985];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
    
  • Maple
    seq(coeff(series(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 04 2019
  • Mathematica
    Drop[CoefficientList[Series[x^4*(1+21*x-10*x^2-2*x^3-7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), {x,0,40}], x], 4] (* or *) LinearRecurrence[{4, -5, 2,-1,2,-1}, {1,25,85,215,477,985}, 40] (* G. C. Greubel, Nov 04 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
    
  • Sage
    def A027026_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()
    a=A027026_list(50); a[4:] # G. C. Greubel, Nov 04 2019
    

Formula

G.f.: x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)). - Ralf Stephan, Feb 11 2004
a(n) = A000213(n+4) -2*n*(n+3), n>3. - R. J. Mathar, Jun 24 2020

A027025 a(n) = T(n,n+3), T given by A027023.

Original entry on oeis.org

1, 11, 33, 77, 161, 319, 613, 1157, 2161, 4011, 7417, 13685, 25217, 46431, 85453, 157229, 289249, 532075, 978705, 1800189, 3311137, 6090207, 11201717, 20603253, 37895377, 69700555, 128199401, 235795557, 433695745, 797690943
Offset: 3

Views

Author

Keywords

Programs

  • GAP
    a:=[1,11,33,77,161];; for n in [6..30] do a[n]:=3*a[n-1]-2*a[n-2]-a[n-4] +a[n-5]; od; a; # G. C. Greubel, Nov 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
    
  • Maple
    seq(coeff(series(x^4/((1+2*x)*(2*x^3+x^2-2*x+1)), x, n+1), x, n), n = 3..40); # G. C. Greubel, Nov 04 2019
  • Mathematica
    Drop[CoefficientList[Series[x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)), {x,0,40}], x], 3] (* or *) LinearRecurrence[{3,-2,0,-1,1}, {1, 11,33,77,161}, 40] (* G. C. Greubel, Nov 04 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3))).list()
    a=A077952_list(40); a[3:] # G. C. Greubel, Nov 04 2019
    

Formula

G.f.: x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)).
a(n) = A000213(n+3) -4*(n+1). - R. J. Mathar, Jun 24 2020

A027035 a(n) = Sum_{k=0..n} T(n,n+k), T given by A027023.

Original entry on oeis.org

1, 2, 5, 14, 39, 112, 323, 932, 2693, 7790, 22565, 65466, 190243, 553748, 1614363, 4713432, 13780841, 40343210, 118243273, 346937614, 1018958151, 2995407840, 8812890391, 25948662684, 76457517949, 225429675606, 665069604713
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(add(T(n, k), k=n..2*n), n=0..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k], {k,n,2*n}], {n,0,30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n, k) for k in (n..2*n)) for n in (0..30)] # G. C. Greubel, Nov 04 2019

A027027 a(n) = T(n, 2n-3), T given by A027023.

Original entry on oeis.org

1, 3, 9, 27, 77, 215, 597, 1655, 4593, 12775, 35629, 99651, 279501, 786071, 2216437, 6264663, 17746897, 50380895, 143307269, 408388819, 1165819757, 3333448075, 9545909641, 27375525727, 78612676241, 226034151539, 650692800633
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n, 2*n-3), n=2..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-3], {n, 2, 30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-3) for n in (2..30)] # G. C. Greubel, Nov 04 2019

Formula

Conjecture: D-finite with recurrence (n+1)*a(n) +(-8*n-1)*a(n-1) +(19*n-14)*a(n-2) +2*(-3*n-1)*a(n-3) +(-21*n+89)*a(n-4) +(8*n-45)*a(n-5) +(n-4)*a(n-6) +6*(n-4)*a(n-7)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 7/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A027028 a(n) = T(n,2n-4), T given by A027023.

Original entry on oeis.org

1, 1, 5, 17, 53, 161, 477, 1393, 4033, 11617, 33365, 95681, 274209, 785793, 2252509, 6460433, 18542169, 53260481, 153115765, 440572993, 1268830877, 3657435745, 10551936125, 30469329025, 88056216233, 254690980449
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n, 2*n-4), n=2..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-4], {n, 2, 30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-4) for n in (2..30)] # G. C. Greubel, Nov 04 2019

Formula

Conjecture D-finite with recurrence -(n+2)*(n-6)*a(n) +3*(n+1)*(2*n-11)*a(n-1) -n*(7*n-31)*a(n-2) -2*(n-3)*(4*n-19)*a(n-3) +(5*n^2-38*n+84)*a(n-4) +(2*n-5)*(n-3)*a(n-5) +3*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 5/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A027029 a(n) = T(n,2n-5), T given by A027023.

Original entry on oeis.org

1, 3, 9, 31, 101, 319, 985, 2991, 8973, 26687, 78877, 232083, 680645, 1991487, 5817073, 16971415, 49474389, 144149959, 419869065, 1222785111, 3561052305, 10371483259, 30211361481, 88022087975, 256521698097, 747794233779
Offset: 3

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n, 2*n-5), n=3..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-5], {n, 3, 30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-5) for n in (3..30)] # G. C. Greubel, Nov 04 2019

A027030 a(n) = T(n,2n-6), T given by A027023.

Original entry on oeis.org

1, 1, 5, 17, 57, 189, 613, 1949, 6097, 18825, 57525, 174353, 525049, 1573077, 4693909, 13960805, 41415089, 122603341, 362343053, 1069436317, 3152995209, 9287942097, 27341397469, 80443393889, 236581555233, 695561538977
Offset: 3

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-6), n=3..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-6], {n,3,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-6) for n in (3..30)] # G. C. Greubel, Nov 04 2019

A027031 a(n) = T(n,2n-7), T given by A027023.

Original entry on oeis.org

1, 3, 9, 31, 105, 351, 1157, 3755, 12013, 37951, 118613, 367383, 1129345, 3449823, 10482869, 31713863, 95589753, 287224199, 860773781, 2573894583, 7681972113, 22890634939, 68116073369, 202458285647, 601159897137
Offset: 4

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-7), n=4..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-7], {n,4,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-7) for n in (4..30)] # G. C. Greubel, Nov 05 2019

A027032 a(n) = T(n,2n-8), T given by A027023.

Original entry on oeis.org

1, 1, 5, 17, 57, 193, 649, 2161, 7113, 23137, 74417, 236913, 747401, 2339137, 7270189, 22460801, 69031105, 211206529, 643684485, 1955082321, 5920720729, 17884040961, 53898818389, 162120056257, 486791503521, 1459448379329
Offset: 4

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-8), n=4..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-8], {n,4,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-8) for n in (4..30)] # G. C. Greubel, Nov 05 2019
Showing 1-10 of 29 results. Next