cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027336 Number of partitions of n that do not contain 2 as a part.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, 45, 58, 75, 96, 121, 154, 193, 242, 302, 375, 463, 573, 703, 861, 1052, 1282, 1555, 1886, 2277, 2745, 3301, 3961, 4740, 5667, 6754, 8038, 9548, 11323, 13398, 15836, 18678, 22001, 25873, 30383, 35620, 41715, 48771
Offset: 0

Views

Author

Keywords

Comments

Pairwise sums of sequence A002865 (partitions in which the least part is at least 2).
Also number of partitions of n into parts with at most one 1. - Reinhard Zumkeller, Oct 25 2004
Also number of partitions of n into parts with at least half of the parts having size 1; equivalently (by duality) number of partitions of n where the large part is at least twice as big as the second largest part. - Franklin T. Adams-Watters, Jun 08 2005
Also number of 2-regular not necessarily connected graphs with loops allowed but no multiple edges. - Jason Kimberley, Jan 05 2011

Crossrefs

2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), A002865 (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
Column k=1 of A292622.

Programs

  • Magma
    A41 := func;
    [A41(n)-A41(n-2):n in [0..49]]; // Jason Kimberley, Jan 05 2011
  • Maple
    with(combinat): a:=proc(n) if n=0 then 1 elif n=1 then 1 else numbpart(n)-numbpart(n-2) fi end: seq(a(n),n=0..49); # Emeric Deutsch, Feb 18 2006
  • Mathematica
    a[n_] = PartitionsP[n] - PartitionsP[n-2]; a /@ Range[0, 49] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x^2)/eta(x+x*O(x^n)),n))
    

Formula

G.f.: (1 - x^2)*Product_{m>=1} 1/(1 - x^m).
a(n) = A000041(n) - A000041(n-2).
a(n) = p(n) - p(n-2) for n >= 2, where p(n) are the partition numbers (A000041); follows at once from the g.f. - Emeric Deutsch, Feb 18 2006
a(n) ~ exp(sqrt(2*n/3)*Pi)*Pi / (6*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6)))/sqrt(n) + (25/8 + 9/(2*Pi^2) + 817*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

More terms from Benoit Cloitre, Dec 10 2002