cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027375 Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.

Original entry on oeis.org

0, 2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646, 4294901760
Offset: 0

Views

Author

Keywords

Comments

A sequence S is aperiodic if it is not of the form S = T^k with k>1. - N. J. A. Sloane, Oct 26 2012
Equivalently, number of output sequences with primitive period n from a simple cycling shift register. - Frank Ruskey, Jan 17 2000
Also, the number of nonempty subsets A of the set of the integers 1 to n such that gcd(A) is relatively prime to n (for n>1). - R. J. Mathar, Aug 13 2006; range corrected by Geoffrey Critzer, Dec 07 2014
Without the first term, this sequence is the Moebius transform of 2^n (n>0). For n > 0, a(n) is also the number of periodic points of period n of the transform associated to the Kolakoski sequence A000002. This transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the 2 periodic points of period 2. A001037(n) = a(n)/n gives the number of orbits of size n. - Jean-Christophe Hervé, Oct 25 2014
From Bernard Schott, Jun 19 2019: (Start)
There are 2^n strings of length n that can be formed from the symbols 0 and 1; in the example below with a(3) = 6, the last two strings that are not aperiodic binary strings are { 000, 111 }, corresponding to 0^3 and 1^3, using the notation of the first comment.
Two properties mentioned by Krusemeyer et al. are:
1) For any n > 2, a(n) is divisible by 6.
2) Lim_{n->oo} a(n+1)/a(n) = 2. (End)

Examples

			a(3) = 6 = |{ 001, 010, 011, 100, 101, 110 }|. - corrected by _Geoffrey Critzer_, Dec 07 2014
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 13. - From N. J. A. Sloane, Oct 26 2012
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 164.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • Mark I. Krusemeyer, George T. Gilbert, Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 128, pp. 225-227.

Crossrefs

A038199 and A056267 are essentially the same sequence with different initial terms.
Column k=2 of A143324.

Programs

  • Haskell
    a027375 n = n * a001037 n  -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A027375 :=n->add( mobius(d)*2^(n/d), d = divisors(n)); # N. J. A. Sloane, Sep 25 2012
  • Mathematica
    Table[ Apply[ Plus, MoebiusMu[ n / Divisors[n] ]*2^Divisors[n] ], {n, 1, 32} ]
    a[0]=0; a[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n\d)*2^d);
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(d)*2**(n//d) for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(d)*2^(n/d).
a(n) = 2*A000740(n).
a(n) = n*A001037(n).
Sum_{d|n} a(n) = 2^n.
a(p) = 2^p - 2 for p prime. - R. J. Mathar, Aug 13 2006
a(n) = 2^n - O(2^(n/2)). - Charles R Greathouse IV, Apr 28 2016
a(n) = 2^n - A152061(n). - Bernard Schott, Jun 20 2019
G.f.: 2 * Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Nov 11 2019