A027375 Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.
0, 2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646, 4294901760
Offset: 0
Examples
a(3) = 6 = |{ 001, 010, 011, 100, 101, 110 }|. - corrected by _Geoffrey Critzer_, Dec 07 2014
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 13. - From N. J. A. Sloane, Oct 26 2012
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 164.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- Mark I. Krusemeyer, George T. Gilbert, Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 128, pp. 225-227.
Links
- T. D. Noe, Table of n, a(n) for n = 0..300
- J.-P. Allouche, Note on the transcendence of a generating function. In A. Laurincikas and E. Manstavicius, editors, Proceedings of the Palanga Conference for the 75th birthday of Prof. Kubilius, New trends in Probab. and Statist., Vol. 4, pages 461-465, 1997.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- John D. Cook, Counting primitive bit strings (2014).
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 85.
- Guilhem Gamard, Gwenaël Richomme, Jeffrey Shallit and Taylor J. Smith, Periodicity in rectangular arrays, arXiv:1602.06915 [cs.DM], 2016; Information Processing Letters 118 (2017) 58-63. See Table 1.
- O. Georgiou, C. P. Dettmann and E. G. Altmann, Faster than expected escape for a class of fully chaotic maps, arXiv preprint arXiv:1207.7000 [nlin.CD], 2012. - From _N. J. A. Sloane_, Dec 23 2012
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- David W. Lyons, Cristina Mullican, Adam Rilatt, and Jack D. Putnam, Werner states from diagrams, arXiv:2302.05572 [quant-ph], 2023.
- Robert M. May, Simple mathematical models with very complicated dynamics, Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - _N. J. A. Sloane_, Mar 17 2019
- M. B. Nathanson, Primitive sets and Euler phi function for subsets of {1,2,...,n}, arXiv:math/0608150 [math.NT], 2006-2007.
- P. Pongsriiam, Relatively Prime Sets, Divisor Sums, and Partial Sums, arXiv:1306.4891 [math.NT], 2013 and J. Int. Seq. 16 (2013) #13.9.1.
- P. Pongsriiam, A remark on relative prime sets, arXiv:1306.2529 [math.NT], 2013.
- P. Pongsriiam, A remark on relative prime sets, Integers 13 (2013), A49.
- R. C. Read, Combinatorial problems in the theory of music, Disc. Math. 167/168 (1997) 543-551, sequence A(n).
- M. Tang, Relatively Prime Sets and a Phi Function for Subsets of {1, 2, ... , n}, J. Int. Seq. 13 (2010) # 10.7.6.
- László Tóth, Menon-type identities concerning subsets of the set {1,2,...,n}, arXiv:2109.06541 [math.NT], 2021.
Crossrefs
Programs
-
Haskell
a027375 n = n * a001037 n -- Reinhard Zumkeller, Feb 01 2013
-
Maple
with(numtheory): A027375 :=n->add( mobius(d)*2^(n/d), d = divisors(n)); # N. J. A. Sloane, Sep 25 2012
-
Mathematica
Table[ Apply[ Plus, MoebiusMu[ n / Divisors[n] ]*2^Divisors[n] ], {n, 1, 32} ] a[0]=0; a[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
a(n) = sumdiv(n,d,moebius(n\d)*2^d);
-
Python
from sympy import mobius, divisors def a(n): return sum(mobius(d)*2**(n//d) for d in divisors(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 28 2017
Formula
a(n) = Sum_{d|n} mu(d)*2^(n/d).
a(n) = 2*A000740(n).
a(n) = n*A001037(n).
Sum_{d|n} a(n) = 2^n.
a(p) = 2^p - 2 for p prime. - R. J. Mathar, Aug 13 2006
a(n) = 2^n - O(2^(n/2)). - Charles R Greathouse IV, Apr 28 2016
a(n) = 2^n - A152061(n). - Bernard Schott, Jun 20 2019
G.f.: 2 * Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Nov 11 2019
Comments