A351839 Triangle read by rows: T(n, k) = A027375(n)*Sum_{m=1..floor(n/k)} binomial(n, k*m).
2, 6, 2, 14, 6, 6, 30, 14, 24, 12, 62, 30, 60, 60, 30, 126, 62, 126, 180, 180, 54, 254, 126, 252, 420, 630, 378, 126, 510, 254, 504, 852, 1680, 1512, 1008, 240, 1022, 510, 1014, 1620, 3780, 4536, 4536, 2160, 504, 2046, 1022, 2040, 3060, 7590, 11340, 15120, 10800, 5040, 990
Offset: 1
Examples
Triangle begins: 2; 6, 2; 14, 6, 6; 30, 14, 24, 12; 62, 30, 60, 60, 30; 126, 62, 126, 180, 180, 54; 254, 126, 252, 420, 630, 378, 126; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Kun Hao, Olof Salberger, and Vladimir Korepin, Can a spin chain relate combinatorics to number theory?, arXiv:2202.07647 [quant-ph], 2022. See pp. 9-10.
Crossrefs
Programs
-
Mathematica
g[n_]:= DivisorSum[n,(2^#)*MoebiusMu[n/#]&]; binomSum[n_,k_]:=Sum[Binomial[n, i],{i,k,n,k}]; T[n_,k_]:=g[k]*binomSum[n,k]; (* See p. 9 in Hao et al. *) Flatten[Table[T[n,k],{n,10},{k,n}]]
-
PARI
T(n,k) = sumdiv(k,d,moebius(d)*2^(k/d))*sum(m=1,n\k,binomial(n,k*m)) \\ Andrew Howroyd, Feb 21 2022
Comments