cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 75 results. Next

A123916 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an odd number of 1's; EULER transform of A000048.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 34, 65, 120, 229, 432, 829, 1583, 3051, 5874, 11370, 22012, 42756, 83113, 161917, 315723, 616588, 1205232, 2358604, 4619485, 9055960, 17766086, 34880215, 68524486, 134707150, 264960828, 521449025
Offset: 1

Views

Author

Mike Zabrocki, Oct 28 2006

Keywords

Examples

			The binary words 1111, 1101, 1001, 0101, 0111, 0001 of length 4 decompose as 1*1*1*1, 1*1*01, 1*001, 01*01, 0111, 0001 and each subword has an odd number of 1's, therefore a(4)=6.
G.f. A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 19*x^7 + 34*x^8 + ... such that A(x)^2 * (1 - 2*x) = A(x^2).
		

Crossrefs

Programs

  • PARI
    /* G.f. A(x) satisfies: A(x)^2 = A(x^2)/(1 - 2*x) */
    {a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x, x^2)/(1 - 2*x +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016
    
  • PARI
    /* As the EULER transform of A000048 */
    {A000048(n) = sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)} \\ Michael B. Porter
    {a(n) = polcoeff( prod(k=1,n, 1/(1 - x^k +x*O(x^n))^A000048(k)), n-1)}
    for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016

Formula

Prod_{n>=1} 1/(1-q^n)^A000048(n) = 1 + sum_{n>=1} a(n) q^n.
G.f. A(x) satisfies: A(x)^2 = A(x^2) / (1 - 2*x). - Paul D. Hanna, Apr 17 2016
a(n) ~ c * 2^n / sqrt(n), where c = 0.3412831644583761326654... . - Vaclav Kotesovec, Apr 18 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2 * (v^2 - 2*u^2*v - u^4) + 2*w*u^4. - Michael Somos, Jun 27 2017

A053734 A000016-A000048 (when they are lined up so that the two 16's match).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 6, 1, 2, 11, 1, 1, 16, 4, 1, 30, 2, 1, 57, 1, 0, 95, 1, 13, 172, 1, 1, 317, 16, 1, 591, 1, 2, 1124, 1, 1, 2048, 10, 52, 3857, 2, 1, 7286, 97, 16, 13799, 1, 1, 26386, 1, 1, 49968, 0, 319, 95331, 1, 2, 182363
Offset: 1

Views

Author

N. J. A. Sloane, Mar 25 2000

Keywords

Programs

  • Maple
    f := proc(n) local d,sum1; sum1 := 0; for d from 1 to n do if d mod 2 = 1 and n mod d = 0 then sum1 := sum1+(phi(d)-mobius(d))*2^(n/d); fi; od; sum1/(2*n); end;
  • Mathematica
    Table[DivisorSum[n, Mod[#, 2] EulerPhi[#]*2^(n/#)/(2 n) &] - DivisorSum[n, Total[MoebiusMu[#]*2^(n/#)]/(2 n) &, OddQ], {n, 69}] (* Michael De Vlieger, Mar 26 2022 *)

A182256 a(n) = 2^n - 2*n*A000048(n).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 4, 2, 0, 8, 4, 2, 16, 2, 4, 38, 0, 2, 64, 2, 16, 134, 4, 2, 256, 32, 4, 512, 16, 2, 1084, 2, 0, 2054, 4, 158, 4096, 2, 4, 8198, 256, 2, 16444, 2, 16, 33272, 4, 2, 65536, 128, 1024, 131078, 16, 2, 262144, 2078, 256, 524294, 4, 2, 1052656, 2, 4, 2097656, 0, 8222, 4194364, 2, 16, 8388614, 17404, 2, 16777216, 2, 4, 33587168, 16, 2174, 67108924
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2012

Keywords

Comments

a(n) = total length of all cycles (see A000048) which are strictly less than the full length of 2n.

References

  • R. K. Guy, Posting to Sequence Fans Mailing List, Apr 20 2012

Crossrefs

Cf. A000048.

Programs

  • Maple
    with (numtheory):
    a:= n-> 2^n -add (mobius(d)*2^(n/d), d=select(x->is(x, odd), divisors(n))):
    seq (a(n), n=0..80);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    a[n_] := 2^n - DivisorSum[n, Mod[#, 2]*MoebiusMu[#]*2^(n/#)&]; a[0] = 1;
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Mar 27 2017 *)

A054172 Inverse Moebius transform of A000048 (starting at term 0).

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 6, 12, 18, 32, 52, 100, 171, 322, 589, 1103, 2049, 3877, 7281, 13830, 26221, 49982, 95326, 182470, 349523, 671260, 1290573, 2485827, 4793491, 9257016, 17895680, 34637936, 67108917, 130152543, 252645143, 490857374
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

A054174 Moebius transform of A000048 (starting at term 0).

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 4, 8, 15, 26, 50, 90, 169, 310, 583, 1082, 2047, 3837, 7279, 13769, 26209, 49878, 95324, 182260, 349518, 670918, 1290539, 2485189, 4793489, 9255782, 17895678, 34635742, 67108813, 130148445, 252645129, 490849458
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

A054197 Binomial transform of A000048.

Original entry on oeis.org

1, 2, 4, 8, 17, 39, 95, 241, 629, 1676, 4533, 12392, 34145, 94670, 263853, 738744, 2076817, 5860033, 16589996, 47108718, 134136047, 382889797, 1095452434, 3140672834, 9021699845, 25961239919, 74829970930, 216016298741, 624469525203
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

Crossrefs

Cf. A000048.

Formula

G.f.: (1/(1 - x)) * (1 + Sum_{k>=1} mu(2*k)*log(1 - 2*(x/(1 - x))^k)/(2*k)). - Ilya Gutkovskiy, Nov 12 2019

A173278 Partial sums of A000048.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 14, 23, 39, 67, 118, 211, 381, 696, 1281, 2372, 4420, 8275, 15555, 29352, 55566, 105495, 200820, 383181, 732701, 1403789, 2694344, 5179848, 9973338, 19229733, 37125412, 71762245, 138871109, 269021602, 521666737
Offset: 0

Views

Author

Jonathan Vos Post, Feb 14 2010

Keywords

Comments

Partial sums of number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged. Partial sums of 2n-bead balanced binary necklaces of fundamental period 2n that are equivalent to their complements. Partial sums of binary Lyndon words of length n with an odd number of 1's. Partial sums of number of binary Lyndon words with trace 1 over GF(2). Partial sums of number of binary irreducible polynomials of degree n having trace 1. For more equivalences see A000048. The subsequence of primes in this partial sum begins: 2, 3, 23, 67, 211, 1403789.

Examples

			a(35) = 1 + 1 + 1 + 1 + 2 + 3 + 5 + 9 + 16 + 28 + 51 + 93 + 170 + 315 + 585 + 1091 + 2048 + 3855 + 7280 + 13797 + 26214 + 49929 + 95325 + 182361 + 349520 + 671088 + 1290555 + 2485504 + 4793490 + 9256395 + 17895679 + 34636833 + 67108864 + 130150493 + 252645135 + 490853403.
		

Crossrefs

Cf. A000048.

A001037 Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0

Views

Author

Keywords

Comments

Also dimensions of free Lie algebras - see A059966, which is essentially the same sequence.
This sequence also represents the number N of cycles of length L in a digraph under x^2 seen modulo a Mersenne prime M_q=2^q-1. This number does not depend on q and L is any divisor of q-1. See Theorem 5 and Corollary 3 of the Shallit and Vasiga paper: N=sum(eulerphi(d)/order(d,2)) where d is a divisor of 2^(q-1)-1 such that order(d,2)=L. - Tony Reix, Nov 17 2005
Except for a(0) = 1, Bau-Sen Du's [1985/2007] Table 1, p. 6, has this sequence as the 7th (rightmost) column. Other columns of the table include (but are not identified as) A006206-A006208. - Jonathan Vos Post, Jun 18 2007
"Number of binary Lyndon words" means: number of binary strings inequivalent modulo rotation (cyclic permutation) of the digits and not having a period smaller than n. This provides a link to A103314, since these strings correspond to the inequivalent zero-sum subsets of U_m (m-th roots of unity) obtained by taking the union of U_n (n|m) with 0 or more U_d (n | d, d | m) multiplied by some power of exp(i 2Pi/n) to make them mutually disjoint. (But not all zero-sum subsets of U_m are of that form.) - M. F. Hasler, Jan 14 2007
Also the number of dynamical cycles of period n of a threshold Boolean automata network which is a quasi-minimal positive circuit of size a multiple of n and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Feb 25 2009
Also, the number of periodic points with (minimal) period n in the iteration of the tent map f(x):=2min{x,1-x} on the unit interval. - Pietro Majer, Sep 22 2009
Number of distinct cycles of minimal period n in a shift dynamical system associated with a totally disconnected hyperbolic iterated function system (see Barnsley link). - Michel Marcus, Oct 06 2013
From Jean-Christophe Hervé, Oct 26 2014: (Start)
For n > 0, a(n) is also the number of orbits of size n of the transform associated to the Kolakoski sequence A000002 (and this is true for any map with 2^n periodic points of period n). The Kolakoski transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the periodic points of the orbit of size 2. A027375(n) = n*a(n) gives the number of periodic points of minimal period n.
For n > 1, this sequence is equal to A059966 and to A060477, and for n = 1, a(1) = A059966(1)+1 = A060477(1)-1; this because the n-th term of all 3 sequences is equal to (1/n)*sum_{d|n} mu(n/d)*(2^d+e), with e = -1/0/1 for resp. A059966/this sequence/A060477, and sum_{d|n} mu(n/d) equals 1 for n = 1 and 0 for all n > 1. (End)
Warning: A000031 and A001037 are easily confused, since they have similar formulas.
From Petros Hadjicostas, Jul 14 2020: (Start)
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) = A001221(N) being the number of distinct primes of N).
For N = 3, a = phi(3)/2 + omega(3) = 2/2 + 1 = 2 and b = omega(3) - 1 = 0. It follows that D(w, N=3) = A000079(w) = 2^w.
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 3, we get that c(w, N=3) = A000079(w)/w = 2^w/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 3, we saw that a = 2 and b = 0, and hence d*(w, N=3) = a(w) = Sum_{k | w} (mu(k)/k) * 2^(w/k) / (w/k) = (1/w) * Sum_{k | w} mu(k) * 2^(w/k) for w >= 1. See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Examples

			Binary strings (Lyndon words, cf. A102659):
a(0) = 1 = #{ "" },
a(1) = 2 = #{ "0", "1" },
a(2) = 1 = #{ "01" },
a(3) = 2 = #{ "001", "011" },
a(4) = 3 = #{ "0001", "0011", "0111" },
a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
		

References

  • Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
  • P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
  • Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A074650.
Row sums of A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Euler transform is A000079.
See A058943 and A102569 for initial terms. See also A058947, A011260, A059966.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Cf. A000031 (n-bead necklaces but may have period dividing n), A014580, A046211, A046209, A006206-A006208, A038063, A060477, A103314.
See also A102659 for the list of binary Lyndon words themselves.

Programs

  • Haskell
    a001037 0 = 1
    a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $
                           a027750_row n) `div` n
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
  • PARI
    A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
    
  • PARI
    {a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
    
  • PARI
    a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017

Formula

For n >= 1:
a(n) = (1/n)*Sum_{d | n} mu(n/d)*2^d.
A000031(n) = Sum_{d | n} a(d).
2^n = Sum_{d | n} d*a(d).
a(n) = A027375(n)/n.
a(n) = A000048(n) + A051841(n).
For n > 1, a(n) = A059966(n) = A060477(n).
G.f.: 1 - Sum_{n >= 1} moebius(n)*log(1 - 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
From Richard L. Ollerton, May 10 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 11 2021

Extensions

Revised by N. J. A. Sloane, Jun 10 2012

A000031 Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, 52488, 99880, 190746, 364724, 699252, 1342184, 2581428, 4971068, 9587580, 18512792, 35792568, 69273668, 134219796, 260301176, 505294128, 981706832
Offset: 0

Views

Author

Keywords

Comments

Also a(n)-1 is the number of 1's in the truth table for the lexicographically least de Bruijn cycle (Fredricksen).
In music, a(n) is the number of distinct classes of scales and chords in an n-note equal-tempered tuning system. - Paul Cantrell, Dec 28 2011
Also, minimum cardinality of an unavoidable set of length-n binary words (Champarnaud, Hansel, Perrin). - Jeffrey Shallit, Jan 10 2019
(1/n) * Dirichlet convolution of phi(n) and 2^n, n>0. - Richard L. Ollerton, May 06 2021
From Jianing Song, Nov 13 2021: (Start)
a(n) is even for n != 0, 2. Proof: write n = 2^e * s with odd s, then a(n) * s = Sum_{d|s} Sum_{k=0..e} phi((2^e*s)/(2^k*d)) * 2^(2^k*d-e) = Sum_{d|s} Sum_{k=0..e-1} phi(s/d) * 2^(2^k*d-k-1) + Sum_{d|s} phi(s/d) * 2^(2^e*d-e) == Sum_{k=0..e-1} 2^(2^k*s-k-1) + 2^(2^e*s-e) == Sum_{k=0..min{e-1,1}} 2^(2^k*s-k-1) (mod 2). a(n) is odd if and only if s = 1 and e-1 = 0, or n = 2.
a(n) == 2 (mod 4) if and only if n = 1, 4 or n = 2*p^e with prime p == 3 (mod 4).
a(n) == 4 (mod 8) if and only if n = 2^e, 3*2^e for e >= 3, or n = p^e, 4*p^e != 12 with prime p == 3 (mod 4), or n = 2s where s is an odd number such that phi(s) == 4 (mod 8). (End)

Examples

			For n=3 and n=4 the necklaces are {000,001,011,111} and {0000,0001,0011,0101,0111,1111}.
The analogous shift register sequences are {000..., 001001..., 011011..., 111...} and {000..., 00010001..., 00110011..., 0101..., 01110111..., 111...}.
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, pp. 120, 172.
  • May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).

Crossrefs

Column 2 of A075195.
Cf. A001037 (primitive solutions to same problem), A014580, A000016, A000013, A000029 (if turning over is allowed), A000011, A001371, A058766.
Rows sums of triangle in A047996.
Dividing by 2 gives A053634.
A008965(n) = a(n) - 1 allowing different offsets.
Cf. A008965, A053635, A052823, A100447 (bisection).
Cf. A000010.

Programs

  • Haskell
    a000031 0 = 1
    a000031 n = (`div` n) $ sum $
       zipWith (*) (map a000010 divs) (map a000079 $ reverse divs)
       where divs = a027750_row n
    -- Reinhard Zumkeller, Mar 21 2013
    
  • Maple
    with(numtheory); A000031 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+phi(d)*2^(n/d); od; RETURN(s/n); fi; end; [ seq(A000031(n), n=0..50) ];
  • Mathematica
    a[n_] := Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n/d), 0], {d, 1, n}]/n
    a[n_] := Fold[#1 + 2^(n/#2) EulerPhi[#2] &, 0, Divisors[n]]/n (* Ben Branman, Jan 08 2011 *)
    Table[Expand[CycleIndex[CyclicGroup[n], t] /. Table[t[i]-> 2, {i, 1, n}]], {n,0, 30}] (* Geoffrey Critzer, Mar 06 2011*)
    a[0] = 1; a[n_] := DivisorSum[n, EulerPhi[#]*2^(n/#)&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2016 *)
    mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-2*x^i]/i,{i,1,mx}],{x,0,mx}],x] (*Herbert Kociemba, Oct 29 2016 *)
  • PARI
    {A000031(n)=if(n==0,1,sumdiv(n,d,eulerphi(d)*2^(n/d))/n)} \\ Randall L Rathbun, Jan 11 2002
    
  • Python
    from sympy import totient, divisors
    def A000031(n): return sum(totient(d)*(1<Chai Wah Wu, Nov 16 2022

Formula

a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n/d) = A053635(n)/n, where phi is A000010.
Warning: easily confused with A001037, which has a similar formula.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n. - Herbert Kociemba, Oct 29 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 2^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 2^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021
Dirichlet g.f.: f(s+1) * (zeta(s)/zeta(s+1)), where f(s) = Sum_{n>=1} 2^n/n^s. - Jianing Song, Nov 13 2021

Extensions

There is an error in Fig. M3860 in the 1995 Encyclopedia of Integer Sequences: in the third line, the formula for A000031 = M0564 should be (1/n) sum phi(d) 2^(n/d).

A027375 Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.

Original entry on oeis.org

0, 2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646, 4294901760
Offset: 0

Views

Author

Keywords

Comments

A sequence S is aperiodic if it is not of the form S = T^k with k>1. - N. J. A. Sloane, Oct 26 2012
Equivalently, number of output sequences with primitive period n from a simple cycling shift register. - Frank Ruskey, Jan 17 2000
Also, the number of nonempty subsets A of the set of the integers 1 to n such that gcd(A) is relatively prime to n (for n>1). - R. J. Mathar, Aug 13 2006; range corrected by Geoffrey Critzer, Dec 07 2014
Without the first term, this sequence is the Moebius transform of 2^n (n>0). For n > 0, a(n) is also the number of periodic points of period n of the transform associated to the Kolakoski sequence A000002. This transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the 2 periodic points of period 2. A001037(n) = a(n)/n gives the number of orbits of size n. - Jean-Christophe Hervé, Oct 25 2014
From Bernard Schott, Jun 19 2019: (Start)
There are 2^n strings of length n that can be formed from the symbols 0 and 1; in the example below with a(3) = 6, the last two strings that are not aperiodic binary strings are { 000, 111 }, corresponding to 0^3 and 1^3, using the notation of the first comment.
Two properties mentioned by Krusemeyer et al. are:
1) For any n > 2, a(n) is divisible by 6.
2) Lim_{n->oo} a(n+1)/a(n) = 2. (End)

Examples

			a(3) = 6 = |{ 001, 010, 011, 100, 101, 110 }|. - corrected by _Geoffrey Critzer_, Dec 07 2014
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 13. - From N. J. A. Sloane, Oct 26 2012
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 164.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • Mark I. Krusemeyer, George T. Gilbert, Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 128, pp. 225-227.

Crossrefs

A038199 and A056267 are essentially the same sequence with different initial terms.
Column k=2 of A143324.

Programs

  • Haskell
    a027375 n = n * a001037 n  -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A027375 :=n->add( mobius(d)*2^(n/d), d = divisors(n)); # N. J. A. Sloane, Sep 25 2012
  • Mathematica
    Table[ Apply[ Plus, MoebiusMu[ n / Divisors[n] ]*2^Divisors[n] ], {n, 1, 32} ]
    a[0]=0; a[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n\d)*2^d);
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(d)*2**(n//d) for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(d)*2^(n/d).
a(n) = 2*A000740(n).
a(n) = n*A001037(n).
Sum_{d|n} a(n) = 2^n.
a(p) = 2^p - 2 for p prime. - R. J. Mathar, Aug 13 2006
a(n) = 2^n - O(2^(n/2)). - Charles R Greathouse IV, Apr 28 2016
a(n) = 2^n - A152061(n). - Bernard Schott, Jun 20 2019
G.f.: 2 * Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Nov 11 2019
Showing 1-10 of 75 results. Next