cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027424 Number of distinct products ij with 1 <= i, j <= n (number of distinct terms in n X n multiplication table).

Original entry on oeis.org

1, 3, 6, 9, 14, 18, 25, 30, 36, 42, 53, 59, 72, 80, 89, 97, 114, 123, 142, 152, 164, 176, 199, 209, 225, 239, 254, 267, 296, 308, 339, 354, 372, 390, 410, 423, 460, 480, 501, 517, 558, 575, 618, 638, 659, 683, 730, 747, 778, 800, 827, 850, 903
Offset: 1

Views

Author

Keywords

Comments

As n->infinity what is an asymptotic expression for a(n)? Reply from Carl Pomerance: Erdős showed that a(n) is o(n^2). Linnik and Vinogradov (1960) showed it is O(n^2/(log n)^c) for some c > 0. Finer estimations were achieved in the book Divisors by Hall and Tenenbaum (Cambridge, 1988), see Theorem 23 on p. 33.
An easy lower bound is to consider primes p > n/2, times anything < n. This gives n^2/(2 log n). - Richard C. Schroeppel, Jul 05 2003
A033677(n) is the smallest k such that n appears in the k X k multiplication table and a(k) is the number of n with A033677(n) <= k.
Erdős showed in 1955 that a(n)=O(n^2/(log n)^c) for some c>0. In 1960, Erdős proved a(n) = n^2/(log n)^(b+o(1)), where b = 1-(1+loglog 2)/log 2 = 0.08607... In 2004, Ford proved a(n) is bounded between two positive constant multiples of n^2/((log n)^b (log log n)^(3/2)). - Kevin Ford (ford(AT)math.uiuc.edu), Apr 20 2006

References

  • Hall, Richard Roxby, and Gérald Tenenbaum. Divisors. Cambridge University Press, 1988.
  • Y. V. Linnik and I. M. Vinogradov, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ. 15 (1960), 41-49 (in Russian).

Crossrefs

Equals A027384 - 1. First differences are in A062854.
Column 2 of A322967.
Cf. A074738 (constant in asymptotic).

Programs

  • Haskell
    import Data.List (nub)
    a027424 n = length $ nub [i*j | i <- [1..n], j <- [1..n]]
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Maple
    A027424m := proc(d,n)
        local a,dvs ;
        a := 0 ;
        for dvs in numtheory[divisors](d) do
            if dvs <= n then
                a := max(a,dvs) ;
            end if;
        end do:
        a ;
    end proc:
    A027424 := proc(n)
        add(add(numtheory[mobius](L/d) *floor(A027424m(d,n) *n/L), d=numtheory[divisors](L)), L=1..n^2) ;
    end proc:
    seq(A027424(n),n=1..40) ; # R. J. Mathar, Oct 02 2020
  • Mathematica
    u = {}; Table[u = Union[u, n*Range[n]]; Length[u], {n, 100}] (* T. D. Noe, Jan 07 2012 *)
  • PARI
    multab(N)=local(v,cv,s,t); v=vector(N); cv=vector(N*N); v[1]=cv[1]=1; for(k=2,N,s=0:for(l=1,k,t=k*l: if(cv[t]==0,s++);cv[t]++);v[k]=v[k-1]+s);v \\ Ralf Stephan
    
  • PARI
    A027424(n)=my(u=0);sum(j=1,n,sum(i=1,j,!bittest(u,i*j) && u+=1<<(i*j))) \\ M. F. Hasler, Oct 08 2012
    
  • PARI
    a(n)=#Set(concat(Vec(matrix(n,n,i,j,i*j)))) \\ Charles R Greathouse IV, Mar 27 2014
    
  • PARI
    a(n) = #setbinop((x,y)->x*y, vector(n, i, i)); \\ Michel Marcus, Jun 19 2015
    
  • Python
    def A027424(n): return len({i*j for i in range(1,n+1) for j in range(1,i+1)}) # Chai Wah Wu, Oct 13 2023

Formula

a(n) = Sum_{L=1..n^2} Sum_{d|L} moebius(L/d) * floor( m(d,n) * n / L ), where m(d,n) is the maximum divisor of d not exceeding n. - Max Alekseyev, Jul 14 2011
a(2^i-1) = A027417(i)-1. - N. J. A. Sloane, Sep 01 2018
From Mats Granvik, Nov 26 2019: (Start)
n^2 = Sum_{m=1..n^2} Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n]
a(n) = Sum_{m=1..n^2} sign( Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n] ), conjecture.
(End)