A027424 Number of distinct products ij with 1 <= i, j <= n (number of distinct terms in n X n multiplication table).
1, 3, 6, 9, 14, 18, 25, 30, 36, 42, 53, 59, 72, 80, 89, 97, 114, 123, 142, 152, 164, 176, 199, 209, 225, 239, 254, 267, 296, 308, 339, 354, 372, 390, 410, 423, 460, 480, 501, 517, 558, 575, 618, 638, 659, 683, 730, 747, 778, 800, 827, 850, 903
Offset: 1
References
- Hall, Richard Roxby, and Gérald Tenenbaum. Divisors. Cambridge University Press, 1988.
- Y. V. Linnik and I. M. Vinogradov, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ. 15 (1960), 41-49 (in Russian).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe, first 2329 terms from N. J. A. Sloane)
- R. P. Brent and C. Pomerance, The multiplication table, and random factored integers, Presented at 56th Annual Meeting of Australian Math. Soc., Ballarat, Sept. 2012.
- R. P. Brent and C. Pomerance, The multiplication table, and random factored integers, Presented at 56th Annual Meeting of Australian Math. Soc., Ballarat, Sept. 2012. [Cached copy, with permission]
- R. P. Brent and C. Pomerance, Some mysteries of multiplication, and how to generate random factored integers, Presented in Hong Kong, Feb. 2015.
- R. P. Brent and C. Pomerance, Some mysteries of multiplication, and how to generate random factored integers, Presented in Hong Kong, Feb. 2015. [Cached copy, with permission]
- Richard Brent, Carl Pomerance, David Purdum, and Jonathan Webster, Algorithms for the Multiplication Table Problem, arXiv:1908.04251 [math.NT], 2019.
- P. Erdős, Some remarks on number theory, Riveon Lematematika 9 (1955), 45-48 (in Hebrew. English summary).
- K. Ford, The distribution of integers with a divisor in a given interval. Annals of Math. 168(2), 367-433. arXiv:math/0401223, (2008).
- Kevin Hartnett, How a Strange Grid Reveals Hidden Connections Between Simple Numbers, Quanta Magazine, Feb 06 2019.
- M. Hassani, Approximation of the Multiplication Table Function, preprint arXiv:math/0603644 [math.NT], 2006.
- D. Koukoulopoulos, On the number of integers in a generalized multiplication table, arXiv:1102.3236 [math.NT], 2011-2013; Journal für die reine und angewandte Mathematik, 2012.
- Yoni Nazarathy, Integers Sequences in the Footsteps of Giants [Blog post and video about this sequence]
- C. Pomerance (1998) Paul Erdős, Number Theorist Extraordinaire, Notices Amer. Math. Soc. 45(1), 19-23.
Crossrefs
Programs
-
Haskell
import Data.List (nub) a027424 n = length $ nub [i*j | i <- [1..n], j <- [1..n]] -- Reinhard Zumkeller, Jan 01 2012
-
Maple
A027424m := proc(d,n) local a,dvs ; a := 0 ; for dvs in numtheory[divisors](d) do if dvs <= n then a := max(a,dvs) ; end if; end do: a ; end proc: A027424 := proc(n) add(add(numtheory[mobius](L/d) *floor(A027424m(d,n) *n/L), d=numtheory[divisors](L)), L=1..n^2) ; end proc: seq(A027424(n),n=1..40) ; # R. J. Mathar, Oct 02 2020
-
Mathematica
u = {}; Table[u = Union[u, n*Range[n]]; Length[u], {n, 100}] (* T. D. Noe, Jan 07 2012 *)
-
PARI
multab(N)=local(v,cv,s,t); v=vector(N); cv=vector(N*N); v[1]=cv[1]=1; for(k=2,N,s=0:for(l=1,k,t=k*l: if(cv[t]==0,s++);cv[t]++);v[k]=v[k-1]+s);v \\ Ralf Stephan
-
PARI
A027424(n)=my(u=0);sum(j=1,n,sum(i=1,j,!bittest(u,i*j) && u+=1<<(i*j))) \\ M. F. Hasler, Oct 08 2012
-
PARI
a(n)=#Set(concat(Vec(matrix(n,n,i,j,i*j)))) \\ Charles R Greathouse IV, Mar 27 2014
-
PARI
a(n) = #setbinop((x,y)->x*y, vector(n, i, i)); \\ Michel Marcus, Jun 19 2015
-
Python
def A027424(n): return len({i*j for i in range(1,n+1) for j in range(1,i+1)}) # Chai Wah Wu, Oct 13 2023
Formula
a(n) = Sum_{L=1..n^2} Sum_{d|L} moebius(L/d) * floor( m(d,n) * n / L ), where m(d,n) is the maximum divisor of d not exceeding n. - Max Alekseyev, Jul 14 2011
a(2^i-1) = A027417(i)-1. - N. J. A. Sloane, Sep 01 2018
From Mats Granvik, Nov 26 2019: (Start)
n^2 = Sum_{m=1..n^2} Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n]
a(n) = Sum_{m=1..n^2} sign( Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n] ), conjecture.
(End)
Comments