A027430 Number of distinct products i*j*k with 1 <= i < j < k <= n.
0, 0, 1, 4, 10, 16, 29, 42, 60, 75, 111, 126, 177, 206, 238, 274, 361, 396, 507, 554, 613, 677, 838, 883, 1004, 1092, 1198, 1277, 1529, 1590, 1881, 1998, 2133, 2275, 2432, 2518, 2921, 3096, 3278, 3391, 3884, 4014, 4563, 4750, 4938, 5186, 5840, 5987, 6422, 6652
Offset: 1
Keywords
References
- Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, Smarandache Notions Journal, 1-2-3, Vol. 11, 2000.
Links
- David A. Corneth, Table of n, a(n) for n = 1..700 (first 200 terms by T. D. Noe)
- Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, viXra:1403.0647, 2014.
- David A. Corneth, Pari program
Crossrefs
Programs
-
Haskell
import Data.List (nub) a027430 n = length $ nub [i*j*k | k<-[3..n], j<-[2..k-1], i<-[1..j-1]] -- Reinhard Zumkeller, Jan 01 2012
-
Mathematica
nn = 50; prod = Table[0, {1 + nn^3}]; a[1] = 0; a[n_] := (Do[prod[[1 + i*j*k]] = 1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1 + n^3], 1] - 1); Array[a, nn] (* Jean-François Alcover, Jul 31 2018, after T. D. Noe *)
-
PARI
\\ See PARI link. David A. Corneth, Jul 31 2018
-
Python
def A027430(n): return len({i*j*k for i in range(1,n+1) for j in range(1,i) for k in range(1,j)}) # Chai Wah Wu, Oct 16 2023
Formula
a(n) <= A000292(n - 2). - David A. Corneth, Jul 31 2018
Extensions
Corrected by David Wasserman, Nov 18 2004