A027466 Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j).
1, 7, 1, 49, 14, 1, 343, 147, 21, 1, 2401, 1372, 294, 28, 1, 16807, 12005, 3430, 490, 35, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1
Offset: 0
Examples
Triangle begins: 1; 7, 1; 49, 14, 1; 343, 147, 21, 1; 2401, 1372, 294, 28, 1; 16807, 12005, 3430, 490, 35, 1; 117649, 100842, 36015, 6860, 735, 42, 1; 823543, 823543, 352947, 84035, 12005, 1029, 49, 1; 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..5000
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Programs
-
GAP
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*7^(i-j)))); # Muniru A Asiru, Jul 21 2018
-
Maple
for i from 0 to 8 do seq(binomial(i, j)*7^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Mathematica
Flatten[Table[Binomial[i,j]7^(i-j),{i,0,10},{j,0,i}]] (* Harvey P. Dale, Dec 03 2012 *) t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *) Table[CoefficientList[ Expand[(7 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *)
Formula
Cube of lower triangular normalized Binomial matrix.
Numerators of lower triangle of (a( i, j ))^3 where a( i, j ) = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 otherwise.
T(0,0) = 1; T(n,k) = 7*T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018
Extensions
Simpler definition from N. J. A. Sloane
Comments