A027474 a(n) = 7^(n-2) * C(n,2).
1, 21, 294, 3430, 36015, 352947, 3294172, 29647548, 259416045, 2219448385, 18643366434, 154231485954, 1259557135291, 10173346092735, 81386768741880, 645668365352248, 5084638377148953, 39779817891812397, 309398583602985310
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..400
- Index entries for linear recurrences with constant coefficients, signature (21,-147,343).
Crossrefs
Programs
-
Magma
[7^(n-2)* Binomial(n, 2): n in [2..20]]; /* Vincenzo Librandi, Oct 12 2011 */
-
Maple
seq(binomial(n, 2)*7^(n-2), n=2..30); # Zerinvary Lajos, Jun 12 2008
-
Mathematica
Table[7^(n-2) Binomial[n,2], {n,2,20}] (* Harvey P. Dale, Sep 25 2011 *)
-
PARI
a(n)=7^(n-2)*n*(n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[7^(n-2)*binomial(n,2) for n in range(2, 21)] # Zerinvary Lajos, Mar 13 2009
Formula
From Paul Barry, Mar 08 2003: (Start)
G.f.: x^2 / (1-7*x)^3.
a(n) = 21*a(n-1) - 147*a(n-2) + 343*a(n-3), a(0) = a(1) = 0, a(2) = 1. (End)
Numerators of sequence a[3,n] in (a[i,j])^3 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
E.g.f.: (x^2/2)*exp(7*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 14 - 84*log(7/6).
Sum_{n>=2} (-1)^n/a(n) = 112*log(8/7) - 14. (End)
Extensions
Edited by Ralf Stephan, Dec 30 2004
Comments