cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A234041 a(n) = binomial(n+2,2)*gcd(n,3)/3, n >= 0.

Original entry on oeis.org

1, 1, 2, 10, 5, 7, 28, 12, 15, 55, 22, 26, 91, 35, 40, 136, 51, 57, 190, 70, 77, 253, 92, 100, 325, 117, 126, 406, 145, 155, 496, 176, 187, 595, 210, 222, 703, 247, 260, 820, 287, 301, 946, 330, 345, 1081, 376, 392, 1225, 425, 442, 1378, 477, 495, 1540, 532
Offset: 0

Views

Author

Wolfdieter Lang, Feb 24 2014

Keywords

Comments

Apart from the first term, this is the same as A027626. - Bruno Berselli, Feb 24 2014
This is the sequence of the fourth column of the triangle A107711.

Examples

			a(6) = binomial(8,2) = 28 (example for n == 0 (mod 3)),
a(7) = binomial(9,2)/3 = 3*4 = 12 (example for n == 1 (mod 3)),
a(8) = binomial(10,2)/3 = 5*3 = 15 (example for n == 2 (mod 3)).
		

Crossrefs

Cf. A027626, A107711, A026741 (third column of A107711), A109007 (gcd(n,3)).

Programs

  • Mathematica
    Table[Binomial[n + 2, 2] GCD[n + 3, 3]/3, {n, 0, 60}] (* Bruno Berselli, Feb 24 2014 *)
    CoefficientList[Series[(1 + x + 2 x^2 + 7 x^3 + 2 x^4 + x^5 + x^6)/(1 - x^3)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Feb 26 2014 *)
  • PARI
    a(n) = numerator((n+1)*(n+2)/6); \\ Altug Alkan, Apr 19 2018

Formula

G.f.: (1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/(1-x^3)^3.
a(n) = A107711(n+3,3) for n >= 0.
a(n) = (2+(-1)^(n+floor((n+1)/3)))*(n+1)*(n+2)/6. - Bruno Berselli, Feb 24 2014
a(n) is the numerator of (n+1)*(n+2)/6. - Altug Alkan, Apr 19 2018
Sum_{n>=0} 1/a(n) = 6 - 4*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022

A027625 Numerator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

0, 1, 7, 4, 6, 25, 11, 14, 52, 21, 25, 88, 34, 39, 133, 50, 56, 187, 69, 76, 250, 91, 99, 322, 116, 125, 403, 144, 154, 493, 175, 186, 592, 209, 221, 700, 246, 259, 817, 286, 300, 943, 329, 344, 1078, 375, 391, 1222
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027626 (denominator), A095794, A115067, A179436.

Programs

  • Magma
    [Numerator(n*(n+5)/((n+2)*(n+3))): n in [0..50]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[x*(1+7*x+4*x^2+3*x^3+4*x^4-x^5-x^6-2*x^7)/(1-x^3)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
    Numerator[25*Binomial[Range[0, 50]/5 +1, 2]/3] (* G. C. Greubel, Aug 05 2022 *)
  • PARI
    a(n) = numerator(n*(n+5)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(n*(n+5)/6) for n in (0..50)] # G. C. Greubel, Aug 05 2022

Formula

G.f.: x*(1 + 7*x + 4*x^2 + 3*x^3 + 4*x^4 - x^5 - x^6 - 2*x^7)/(1 - x^3)^3.
a(n) = numerator of n*(n+5)/6. - Altug Alkan, Apr 18 2018
From Peter Bala, Aug 06 2022: (Start)
a(n) is quasi-polynomial in n:
a(3*n) = (1/2)*n*(3*n+5) = A115067(n+1).
a(3*n+1) = (1/2)*(n+2)*(3*n+1) = A095794(n+1).
a(3*n+2) = (1/2)*(3*n+2)*(3*n+7) = A179436(n). (End)
Sum_{n>=1} 1/a(n) = 4*Pi/(15*sqrt(3)) + 87/50. - Amiram Eldar, Aug 11 2022
Showing 1-2 of 2 results.