A027642 Denominator of Bernoulli number B_n.
1, 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1
Offset: 0
Examples
The sequence of Bernoulli numbers B_n (n = 0, 1, 2, ...) begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ... [Clarified by _N. J. A. Sloane_, Jun 02 2025]
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
- Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
- Thomas Clausen, "Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352 (see P. Luschny link).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 106-108.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
- Roger Plymen, The Great Prime Number Race, AMS, 2020. See pp. 8-10.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 161.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Bakir Farhi, Formulas Involving Bernoulli and Stirling Numbers of Both Kinds, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.6. See p. 16.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- H. W. Gould and Jocelyn Quaintance, Bernoulli Numbers and a New Binomial Transform Identity, J. Int. Seq. 17 (2014) # 14.2.2
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
- Peter Luschny, Generalized Clausen numbers: definition and application.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Antônio Francisco Neto, Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra, J. Int. Seq. 18 (2015) # 15.5.6.
- Ezgi Polat and Yilmaz Simsek, New formulas for Bernoulli polynomials with applications of matrix equations and Laplace transform, Pub. de l'Inst. Math. (2024) Vol. 116, Issue 130, 59-74. See p. 69.
- Carl Pomerance and Samuel S. Wagstaff Jr, The denominators of the Bernoulli numbers, arXiv:2105.13252 [math.NT], 2021.
- Jonathan Sondow and Emmanuel Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 5.
- Matthew Roughan, The Polylogarithm Function in Julia, arXiv:2010.09860 [math.NA], 2020.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Wikipedia, Bernoulli number
- Index entries for sequences related to Bernoulli numbers.
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a027642 n = a027642_list !! n a027642_list = 1 : map (denominator . sum) (zipWith (zipWith (%)) (zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf) -- Reinhard Zumkeller, Jul 04 2014
-
Magma
[Denominator(Bernoulli(n)): n in [0..150]]; // Vincenzo Librandi, Mar 29 2011
-
Maple
(-1)^n*sum( (-1)^'m'*'m'!*stirling2(n,'m')/('m'+1),'m'=0..n); A027642 := proc(n) denom(bernoulli(n)) ; end: # Zerinvary Lajos, Apr 08 2009
-
Mathematica
Table[ Denominator[ BernoulliB[n]], {n, 0, 68}] (* Robert G. Wilson v, Oct 11 2004 *) Denominator[ Range[0, 68]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 68}], x]] (* Alternative code using Clausen Theorem: *) A027642[k_Integer]:=If[EvenQ[k],Times@@Table[Max[1,Prime[i]*Boole[Divisible[k,Prime[i]-1]]],{i,1,PrimePi[2k]}],1+KroneckerDelta[k,1]]; (* Enrique Pérez Herrero, Jul 15 2010 *) a[0] = 1; a[1] = 2; a[n_?OddQ] = 1; a[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 12 2012, after Ilan Vardi, when direct computation for large n is unfeasible *)
-
PARI
a(n)=if(n<0, 0, denominator(bernfrac(n)))
-
PARI
a(n) = if(n == 0 || (n > 1 && n % 2), 1, vecprod(select(x -> isprime(x), apply(x -> x + 1, divisors(n))))); \\ Amiram Eldar, Apr 24 2024
-
Python
from sympy import bernoulli [bernoulli(i).denominator for i in range(51)] # Indranil Ghosh, Mar 18 2017
-
Sage
def A027642_list(len): f, R, C = 1, [1], [1]+[0]*(len-1) for n in (1..len-1): f *= n for k in range(n, 0, -1): C[k] = C[k-1] / (k+1) C[0] = -sum(C[k] for k in (1..n)) R.append((C[0]*f).denominator()) return R A027642_list(62) # Peter Luschny, Feb 20 2016
Formula
E.g.f: x/(exp(x) - 1); take denominators.
Let E(x) be the e.g.f., then E(x) = U(0), where U(k) = 2*k + 1 - x*(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jun 25 2012
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
E.g.f.: x/(exp(x)-1) = 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
E.g.f.: x/(exp(x)-1) = (1-x)/E(0), where E(k) = 1 - x*(k+1)/(x*(k+1) + (k+2-x)*(k+1-x)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
E.g.f.: conjecture: x/(exp(x)-1) = T(0)/2 - x, where T(k) = 8*k+2 + x/( 1 - x/( 8*k+6 + x/( 1 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
Comments