cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 379 results. Next

A309132 a(n) is the denominator of F(n) = A027641(n-1)/n + A027642(n-1)/n^2.

Original entry on oeis.org

1, 1, 1, 16, 1, 36, 1, 64, 27, 100, 1, 144, 1, 196, 75, 256, 1, 324, 1, 400, 49, 484, 1, 576, 125, 676, 243, 784, 1, 900, 1, 1024, 363, 1156, 1225, 1296, 1, 1444, 169, 1600, 1, 1764, 1, 1936, 135, 2116, 1, 2304, 343, 2500, 867, 2704, 1, 2916, 3025, 3136, 361, 3364, 1, 3600, 1, 3844, 1323, 4096, 845, 4356, 1
Offset: 1

Views

Author

Thomas Ordowski, Jul 14 2019

Keywords

Comments

It seems that the numerator of F(n) is the numerator of (B(n-1) + 1/n), where B(k) is the k-th Bernoulli number; if so, for n > 2, the numerator of F(n) is A174341(n-1). How to prove it?
Conjecture: for n > 1, a(n) = 1 if and only if n is prime.
Is this conjecture equivalent to the Agoh-Giuga conjecture?
Theorem 1. If p is prime, then a(p) = 1. Proof. a(2) = 1, so let p be an odd prime. By the von Staudt-Clausen theorem, if k is even, then B(k) = A(k) - Sum_{prime q, q-1 | k} 1/q, where A(k) is an integer and the sum is over all primes q such that q-1 divides k. Thus B(k) = N(k)/D(k) with D(k) = Product_{prime q, q-1 | k} q. Now let k = p-1. Then N(p-1)/D(p-1) = B(p-1) = A(p-1) - 1/p - Sum_{prime q < p, q-1 | p-1} 1/q (*). Add 1/p to both sides of (*) and multiply by p*D(p-1) to get p*N(p-1) + D(p-1) = p*D(p-1)*(A(p-1) - Sum_{prime q < p, q-1 | p-1} 1/q) (**). Now p | D(p-1), so p^2 | p*D(p-1) in (**). The denominators on the right side of (**) are all of the form q < p. Therefore, p^2 divides both sides of (**). Hence F(p) = N(p-1)/p + D(p-1)/p^2 is an integer, so a(p) = 1. - Jonathan Sondow, Jul 14 2019
Conjecture: composite numbers n such that a(n) is squarefree are only the Carmichael numbers A002997. Cf. A309235. - Thomas Ordowski, Jul 15 2019
Conjecture checked up to n = 101101. - Amiram Eldar, Jul 16 2019
Theorem 2. If n is a prime or a Carmichael number, then a(n) = A326690(n) = denominator of (Sum_{prime p | n} 1/p - 1/n). The proof is a generalization of that of Theorem 1. (Note that Theorem 2 implies Theorem 1, since if n is prime, then (Sum_{prime p | n} 1/p - 1/n) = 1/n - 1/n = 0/1, so a(p) = A326690(n) = 1.) For n a prime or a Carmichael number, an application of Theorem 2 is computing a(n) without calculating Bernoulli(n-1) which may be huge; see A309268 and A326690. - Jonathan Sondow, Jul 19 2019
The values of F(n) when n is prime are A327033. - Jonathan Sondow, Aug 16 2019

Examples

			F(n) = 2/1, 0/1, 1/1, 1/16, 1/1, 1/36, 1/1, 1/64, 7/27, 1/100, 1/1, 1/144, -37/1, 1/196, 37/75, 1/256, -211/1, 1/324, 2311/1, 1/400, -407389/49, ...
		

Crossrefs

Programs

  • Magma
    [Denominator(Numerator(Bernoulli(n-1))/n + Denominator(Bernoulli(n-1))/n^2): n in [1..70]]; // Vincenzo Librandi, Jul 14 2019
  • Mathematica
    Table[Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[ BernoulliB[ n - 1]] / n^2], {n, 70}] (* Vincenzo Librandi, Jul 14 2019 *)
  • PARI
    a(n) = denominator(numerator(bernfrac(n-1))/n + denominator(bernfrac(n-1))/n^2); \\ Michel Marcus, Jul 14 2019
    

Formula

a(p) = 1 for prime p.
a(2k) = (2k)^2 for k > 1.
Conjecture: for k > 0, a(2k+1) = (2k+1)^2 iff 2k+1 is in A121707.
Denominator(F(p)/p) = 1 for the primes p = 2 and p = 1277 but for no other prime p < 1.5 * 10^4. Does denominator(F(p)/p) = 1 for any prime p > 1.5 * 10^4? - Jonathan Sondow, Jul 14 2019
Similarly, Sum_{k=1..p-1} k^(p-1) == -1 (mod p^2) for the prime p = 1277. - Thomas Ordowski, Jul 15 2019
a(n) = denominator(Sum_{prime p | n} 1/p - 1/n) if n is a prime or a Carmichael number. - Jonathan Sondow, Jul 19 2019

A100615 Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).

Original entry on oeis.org

1, -1, 5, -1, 1, 1, -5, -1, 7, 3, -15, -5, 7601, 691, -91, -35, 3617, 3617, -745739, -43867, 3317609, 1222277, -5981591, -854513, 5436374093, 1181820455, -213827575, -76977927, 213745149261, 23749461029, -249859397004145, -8615841276005, 238988952277727, 84802531453387
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2004

Keywords

Comments

With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - Peter Luschny, Jan 23 2023

Examples

			1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
		

References

  • F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

Crossrefs

Programs

  • Maple
    S:= series((x/(exp(x)-1))^2, x, 41):
    seq(numer(coeff(S,x,j)*j!), j=0..40); # Robert Israel, Jun 02 2015
    # Second program:
    a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
    seq(a(n), n = 0..33);  # Peter Luschny, May 18 2023
  • Mathematica
    Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
    Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0,  33}] (* Peter Luschny, May 18 2023 *)
  • Maxima
    a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* Vladimir Kruchinin, Jun 02 2015 */
    
  • PARI
    a(n) = numerator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020

Formula

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - Vladimir Kruchinin, Jun 02 2015
a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020
a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - Peter Luschny, May 18 2023

A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).

Original entry on oeis.org

1, 1, 6, 2, 10, 6, 42, 6, 30, 10, 22, 6, 2730, 210, 6, 2, 34, 30, 798, 42, 330, 110, 46, 6, 2730, 546, 6, 2, 290, 30, 14322, 462, 510, 170, 2, 6, 54834, 51870, 6, 2, 4510, 330, 1806, 42, 690, 46, 94, 6, 46410, 6630, 66, 22, 530, 30, 798, 798, 174, 290, 118, 6, 56786730
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2004

Keywords

Examples

			1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
		

References

  • F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

Crossrefs

Programs

  • Maple
    S:= series((x/(exp(x)-1))^2, x, 101):
    seq(denom(coeff(S,x,n)*n!), n=0..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    a(n) = denominator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020

Formula

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = denominator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020

A166120 a(n) = A027642(n-1) / A089026(n).

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 6, 1, 30, 1, 6, 1, 210, 1, 6, 1, 30, 1, 42, 1, 330, 1, 6, 1, 2730, 1, 6, 1, 30, 1, 462, 1, 510, 1, 6, 1, 51870, 1, 6, 1, 330, 1, 42, 1, 690, 1, 6, 1, 46410, 1, 66, 1, 30, 1, 798, 1, 870, 1, 6, 1, 930930, 1, 6, 1, 510, 1, 966, 1, 30, 1, 66, 1, 1919190, 1, 6, 1, 30, 1, 42, 1
Offset: 1

Views

Author

Paul Curtz, Oct 07 2009

Keywords

Comments

As in A166062, the offset is rather arbitrary.
The sequence contains numbers like 210 which are not in A006954.
One could also consider dividing by the largest prime divisor of A027642 instead of A089026, which yields 1, 1, 2, 1, 6, 1, 6, 1, 6, 1, 6, 1, 210, 1, 2, 1, 30, 1, 42, 1, 30, ... as an alternative version.
These are the Clausen numbers based on the proper divisors of n whereas the classical Clausen numbers A160014 are based on all divisors of n. (The proper divisors are the divisors of n that are less than n.) - Peter Luschny, Aug 20 2022

Crossrefs

Programs

  • Maple
    A027642 := proc(n) denom(bernoulli(n)) ; end:
    A089026 := proc(n) if isprime(n) then n; else 1; end if; end proc:
    A166120 := proc(n) A027642(n-1)/A089026(n) ; end proc: seq(A166120(n), n=1..80) ; # R. J. Mathar, Mar 25 2010
    # Second program, assuming offset 0:
    clausen := proc(n) if irem(n,2)=1 then 1 else numtheory[divisors](n) minus {n};
    map(i -> i+1, %); select(isprime, %); mul(i, i=%) fi end:
    seq(clausen(n), n = 0..79); # Peter Luschny, Aug 20 2022

Extensions

Extended by R. J. Mathar, Mar 25 2010

A181722 Numerator of (1/n - Bernoulli number A164555(n)/A027642(n)).

Original entry on oeis.org

0, 0, 1, 1, 7, 1, 5, 1, 13, 1, 1, 1, 901, 1, -11, 1, 3647, 1, -43825, 1, 1222387, 1, -854507, 1, 1181821001, 1, -76977925, 1, 23749461059, 1, -8615841275543, 1, 28267510484519, 1
Offset: 1

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Comments

An autosequence is a sequence whose inverse binomial transform is the sequence signed. In integers, the oldest example is Fibonacci A000045. In fractions, A164555/A027642 is the son of 1/n via the Akiyama-Tanigawa algorithm; grandson is (A174110/A174111) = 1/2, 2/3, 1/2, 2/15, ...; see A164020. See A174341/A174342. All are from the same family.

Examples

			Fractions are 0, 0, 1/6, 1/4, 7/30, 1/6, 5/42, 1/8, 13/90, 1/10, 1/66, 1/12, 901/2730, ...
		

Crossrefs

Programs

  • Magma
    A181722:= func< n | n le 2 select 0 else Numerator(1/n - Bernoulli(n-1)) >;
    [A181722(n): n in [1..40]]; // G. C. Greubel, Mar 25 2024
    
  • Mathematica
    a[n_] := If[n <= 2, 0, Numerator[1/n - BernoulliB[n-1]]];
    Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 07 2017 *)
  • SageMath
    def A181722(n): return 0 if n<3 else numerator(1/n - bernoulli(n-1))
    [A181722(n) for n in range(1,41)] # G. C. Greubel, Mar 25 2024

A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
Offset: 0

Views

Author

Wolfdieter Lang, Apr 29 2017

Keywords

Comments

The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.

Crossrefs

Programs

  • Maple
    seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • PARI
    a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
  • Python
    from sympy import bernoulli
    def a(n): return -3 if n == 1 else (3**n * bernoulli(n)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
    

Formula

a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).

A138243 Triangle read by rows: Row products give A027642.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Mar 08 2008

Keywords

Comments

Except for the first column, the n-th prime number appears in every A006093(n)-th row, beginning at the A000040(n)-th row, in the n-th column.

Examples

			Row products of the first few rows are:
1 = 1
2*1 = 2
2*3*1 = 6
1*1*1*1 = 1
2*3*5*1*1 = 30
1*1*1*1*1*1 = 1
2*3*1*7*1*1*1 = 42
1*1*1*1*1*1*1*1 = 1
2*3*5*1*1*1*1*1*1 = 30
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(n)), p)=0, p, 1))(ithprime(k)):
    seq(seq(T(n, k), k=1..n+1), n=0..20);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    Table[With[{p = Prime@ k}, p Boole[Divisible[Denominator@ BernoulliB[n - 1], p]]] /. 0 -> 1, {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Aug 27 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017

Formula

T(n,k) = A000040(k) if A027642(n) mod A000040(k) = 0, 1 otherwise.

Extensions

Offset corrected by Alois P. Heinz, Aug 27 2017

A164869 n*A027642(n).

Original entry on oeis.org

0, 2, 12, 3, 120, 5, 252, 7, 240, 9, 660, 11, 32760, 13, 84, 15, 8160, 17, 14364, 19, 6600, 21, 3036, 23, 65520, 25, 156, 27, 24360, 29, 429660, 31, 16320, 33, 204, 35, 69090840, 37, 228, 39, 541200, 41, 75852, 43, 30360, 45, 12972, 47, 2227680, 49, 3300, 51, 82680
Offset: 0

Views

Author

Paul Curtz, Aug 29 2009

Keywords

Crossrefs

Cf. A164877 (bisection).

Formula

a(n) = A164558(n) - A164555(n).
a(n) = A027642(n) * A001477(n).

Extensions

Extended by R. J. Mathar, Sep 03 2009

A165226 Numerator of 1 - A164555(n)/A027642(n).

Original entry on oeis.org

0, 1, 5, 1, 31, 1, 41, 1, 31, 1, 61, 1, 3421, 1, -1, 1, 4127, 1, -43069, 1, 174941, 1, -854375, 1, 236366821, 1, -8553097, 1, 23749461899, 1, -8615841261683, 1, 7709321041727, 1, -2577687858361, 1, 26315271553055396563, 1, -2929993913841553, 1
Offset: 0

Views

Author

Paul Curtz, Sep 09 2009

Keywords

Comments

If n != 1, also the numerator of 1 - Bernoulli(n). The denominators are in A027642.
(There are no common factors to be canceled in the fractions.)
The numerators of 1 - Bernoulli(n) start 0, 3, 5,1, 31, ... and differ only at n=1 from this sequence.
E.g.f. for the rationals r(n) = a(n)/A027642(n) = 1 - A164555(n)/A027642(n): exp(x)*(1 - x/(exp(x) - 1)). - Wolfdieter Lang, Aug 07 2017

Examples

			The rationals r(n) begin: 0, 1/2, 5/6, 1, 31/30, 1, 41/42, 1, 31/30, 1, 61/66, 1, 3421/2730, 1, -1/6, 1, 4127/510, 1, -43069/798, 1, ... - _Wolfdieter Lang_, Aug 07 2017
		

Crossrefs

Programs

  • Maple
    A165226 := proc(n) if n = 1 then 1+bernoulli(n) ; else 1-bernoulli(n) ; end if; numer(%) ; end proc: # R. J. Mathar, Jan 16 2011

Formula

|a(2n)| = A162173(n+1).
a(2n+1) = 1.

A172282 Squares of Bernoulli number denominators A027642.

Original entry on oeis.org

1, 4, 36, 1, 900, 1, 1764, 1, 900, 1, 4356, 1, 7452900, 1, 36, 1, 260100, 1, 636804, 1, 108900, 1, 19044, 1, 7452900, 1, 36, 1, 756900, 1, 205119684, 1, 260100, 1, 36, 1, 3683290256100, 1, 36, 1, 183060900, 1, 3261636, 1, 476100, 1, 79524, 1, 2153888100, 1, 4356, 1, 2528100
Offset: 0

Views

Author

Paul Curtz, Jan 30 2010

Keywords

Comments

Compare the sequence for example with A120083.

Crossrefs

Programs

Formula

a(n) = A027642(n)^2 .

Extensions

Edited and extended by R. J. Mathar, Feb 02 2010
Showing 1-10 of 379 results. Next