cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166123 If n is prime, a(n) = 1; otherwise, a(n) is gcd(n, d) where d is the denominator of the (n-1)-th Bernoulli number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Paul Curtz, Oct 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[PrimeQ[n],1,GCD[n,Denominator[BernoulliB[n-1]]]],{n,100}] (* Harvey P. Dale, Sep 07 2017 *)
  • PARI
    a(n)=if(isprime(n),1,gcd(denominator(bernfrac(n-1)),n)) \\ Charles R Greathouse IV, Jun 20 2011
    
  • PARI
    a(n)=my(b=bernfrac(n-1));denominator(b)/denominator(b*n)/if(isprime(n),n,1) \\ Charles R Greathouse IV, Jun 20 2011
    
  • PARI
    a(n)=if(isprime(n),1,my(b=bernfrac(n-1));denominator(b)/denominator(b*n)) \\ Charles R Greathouse IV, Jun 20 2011

Formula

a(n) = A166120(n)/ A050932(n-1).

A166333 The largest prime that divides A027642(n) (the denominator of the Bernoulli number B_n), or 1 if A027642(n) is 1.

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 5, 1, 11, 1, 13, 1, 3, 1, 17, 1, 19, 1, 11, 1, 23, 1, 13, 1, 3, 1, 29, 1, 31, 1, 17, 1, 3, 1, 37, 1, 3, 1, 41, 1, 43, 1, 23, 1, 47, 1, 17, 1, 11, 1, 53, 1, 19, 1, 29, 1, 59, 1, 61, 1, 3, 1, 17, 1, 67, 1, 5, 1, 71, 1, 73, 1, 3, 1, 5, 1, 79, 1, 41, 1, 83, 1, 43, 1, 3, 1, 89, 1
Offset: 0

Views

Author

Paul Curtz, Oct 12 2009

Keywords

Comments

The largest member of the extended prime list A008578 which divides the denominator of Bernoulli(n).
Essentially A073409 padded with 1's.

Crossrefs

Programs

Formula

a(n) = A006530(A027642(n)). - Antti Karttunen, Dec 19 2018

Extensions

Edited and extended by R. J. Mathar, Oct 21 2009
Name and comment swapped by Antti Karttunen, Dec 19 2018

A356655 Clausen numbers based on the strictly proper divisors of n, 1 < d < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 1, 15, 1, 3, 1, 105, 1, 3, 1, 15, 1, 21, 1, 165, 1, 3, 1, 1365, 1, 3, 1, 15, 1, 231, 1, 255, 1, 3, 1, 25935, 1, 3, 1, 165, 1, 21, 1, 345, 1, 3, 1, 23205, 1, 33, 1, 15, 1, 399, 1, 435, 1, 3, 1, 465465, 1, 3, 1, 255, 1, 483, 1, 15, 1, 33, 1
Offset: 0

Views

Author

Peter Luschny, Aug 20 2022

Keywords

Crossrefs

Programs

  • Maple
    clausen := proc(n) numtheory[divisors](n) minus {1, n};
    map(i -> i+1, %); select(isprime, %); mul(i, i=%)  end:
    seq(clausen(n), n = 0..80);
  • Mathematica
    a[n_] := Product[If[1 < d < n && PrimeQ[d + 1], d + 1, 1], {d, Divisors[n]}]; Array[a, 100, 0] (* Amiram Eldar, Aug 20 2022 *)
  • PARI
    a(n) = if (n, vecprod(select(isprime, apply(x->x+1, setminus(divisors(n), [1,n])))), 1); \\ Michel Marcus, Aug 21 2022

Formula

a(n) = Product_{d | n} (d + 1), where d + 1 is prime and 1 < d < n.
Showing 1-3 of 3 results.