cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027659 a(n) = binomial(n+2,2) + binomial(n+3,3) + binomial(n+4,4) + binomial(n+5,5).

Original entry on oeis.org

4, 18, 52, 121, 246, 455, 784, 1278, 1992, 2992, 4356, 6175, 8554, 11613, 15488, 20332, 26316, 33630, 42484, 53109, 65758, 80707, 98256, 118730, 142480, 169884, 201348, 237307, 278226, 324601, 376960, 435864, 501908, 575722, 657972, 749361, 850630, 962559
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A063258.

Programs

  • Magma
    [Binomial(n+6, 5) -(n+2): n in [0..60]]; // G. C. Greubel, Aug 01 2022
    
  • Maple
    seq(1/120*(n+8)*(n+2)*(n+1)*(n^2+9*n+30), n=0..40);
  • Mathematica
    Table[Sum[Binomial[n+i,i],{i,2,5}],{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20, -15,6,-1}, {4,18,52,121,246,455},30] (* Harvey P. Dale, Aug 18 2012 *)
    Sum[(-1)^j*Binomial[4*j-2 + Range[0, 60], 4*j-3], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
  • PARI
    a(n)=(n+8)*(n+2)*(n+1)*(n^2+9*n+30)/120 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [binomial(n+6, 5) -(n+2) for n in (0..60)] # G. C. Greubel, Aug 01 2022

Formula

a(n) = A035343(n+2, 5), n >= 0 (sixth column of quintinomial coefficients).
a(n) = A062750(n+2, 5), n >= 0 (sixth column).
G.f.: (x^2)*(2-x)*(2 - 2*x + x^2)/(1-x)^6. (For numerator polynomial see N5(5, x) = 4 - 6*x + 4*x^2 - x^3 from A063422.)
a(n) = binomial(n+6, 5) - binomial(n+2, 1). - Zerinvary Lajos, May 08 2006
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), with a(0)=4, a(1)=18, a(2)=52, a(3)=121, a(4)=246, a(5)=455. - Harvey P. Dale, Aug 18 2012
From G. C. Greubel, Aug 01 2022: (Start)
a(n) = Sum_{j=0..3} binomial(n+j+2, j+2).
E.g.f.: (1/120)*(480 +1680*x +1200*x^2 +300*x^3 +30*x^4 +x^5)*exp(x). (End)