cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062750 Generalized Catalan array FS(4; n,r).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 1, 3, 6, 10, 14, 18, 22, 22, 22, 22, 1, 4, 10, 20, 34, 52, 74, 96, 118, 140, 140, 140, 140, 1, 5, 15, 35, 69, 121, 195, 291, 409, 549, 689, 829, 969, 969, 969, 969, 1, 6, 21, 56, 125
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this array is called {n over r}_{m-1}, with m=4.
The step width sequence of this staircase array is [1,3,3,3,....], i.e. the degree of the row polynomials is [0,3,6,9,...]= A008585.
The columns r=0..6 give A000012 (powers of 1), A000027 (natural), A000217 (triangular), A000292 (tetrahedral), A063258, A027659, A062966.

Examples

			{1}; {1,1,1,1}; {1,2,3,4,4,4,4}; {1,3,6,10,14,18,22,22,22,22}; ...; N(4; 1,x)=(2-x)*(2-2*x+x^2).
		

Formula

a(0, 0)=1, a(n, -1)=0, n >= 1; a(n, r)=0 if r>3*n; a(n, r)=a(n, r-1)+a(n-1, r) else.
G.f. for column r=3*k+j, k >= 0, j=1, 2, 3: (x^(k+1))*N(4; k, x)/(1-x)^(3*k+1+j), with the row polynomials N(4; k, x) of array A062751.

A213743 Triangle T(n,k), read by rows, of numbers T(n,k)=C^(4)(n,k) of combinations with repetitions from n different elements over k for each of them not more than four appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 121, 1, 6, 21, 56, 126, 246, 426, 1, 7, 28, 84, 210, 455, 875, 1520, 1, 8, 36, 120, 330, 784, 1652, 3144, 5475, 1, 9, 45, 165, 495, 1278, 2922, 6030, 11385, 19855, 1, 10, 55, 220, 715, 1992, 4905, 10890, 22110, 41470, 72403
Offset: 0

Views

Author

Keywords

Comments

The left side of triangle consists of 1's, while the right side is formed by A187925. Further, T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A027659(n) for n>=3, T(n,6)=A064056(n) for n>=4, T(n,7)=A064057(n) for n>=5, T(n,8)=A064058(n) for n>=6, T(n,9)=A000575(n) for n>=6.

Examples

			Triangle begins
  n/k.|..0.....1.....2.....3.....4.....5.....6.....7
  ==================================================
  .0..|..1
  .1..|..1.....1
  .2..|..1.....2.....3
  .3..|..1.....3.....6....10
  .4..|..1.....4....10....20....35
  .5..|..1.....5....15....35....70....121
  .6..|..1.....6....21....56...126....246...426
  .7..|..1.....7....28....84...210....455...875....1520
T(4,2)=C^(4)(4,2): From 4 elements {1,2,3,4}, we have the following 10 allowed combinations of 2 elements: {1,1}, {1,2}, {1,3}, {1,4}, {2,2}, {2,3}, {2,4}, {3,3}, {3,4}, {4,4}.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[5] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(4)(n,k) = Sum_{r=0...floor(k/5)} (-1)^r*C(n,r)*C(n-5*r+k-1, n-1).

A064056 Seventh column of quintinomial coefficients.

Original entry on oeis.org

3, 19, 68, 185, 426, 875, 1652, 2922, 4905, 7887, 12232, 18395, 26936, 38535, 54008, 74324, 100623, 134235, 176700, 229789, 295526, 376211, 474444, 593150, 735605, 905463, 1106784, 1344063, 1622260, 1946831
Offset: 0

Views

Author

Wolfdieter Lang, Aug 29 2001

Keywords

Crossrefs

Cf. A027659 (sixth column).

Formula

a(n) = A035343(n+2, 6) = binomial(n+2, 2)*(n^4+24*n^3+221*n^2+954*n+1080)/(6!/2!), n >= 0.
G.f.: (3-2*x-2*x^2+3*x^3-x^4)/(1-x)^7; numerator polynomial is N5(6, x) from the array A063422.
a(n) = 3*C(n+2,2) + 10*C(n+2,3) + 10*C(n+2,4) + 5*C(n+2,5) + C(n+2,6) (see comment in A213887). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

A062966 a(n) = C(3+n, n) + C(4+n, n) + C(5+n, n) + C(6+n, n).

Original entry on oeis.org

4, 22, 74, 195, 441, 896, 1680, 2958, 4950, 7942, 12298, 18473, 27027, 38640, 54128, 74460, 100776, 134406, 176890, 229999, 295757, 376464, 474720, 593450, 735930, 905814, 1107162, 1344469, 1622695, 1947296
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 6}_{3}, n >= 0.

Crossrefs

Seventh column (r=6) of FS(4) staircase array A062750.
Partial sums of A027659.

Programs

  • Mathematica
    Table[Sum[Binomial[i+n,n],{i,3,6}],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{4,22,74,195,441,896,1680},30] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    { for (n=0, 1000, a=binomial(3 + n, n) + binomial(4 + n, n) + binomial(5 + n, n) + binomial(6 + n, n); write("b062966.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 14 2009

Formula

a(n) = A062750(n+2, 6) = (n+10)*(n+3)*(n+2)*(n+1)*(n^2+11*n+48)/6!.
G.f.: = (x-2)*(x^2-2*x+2)/(x-1)^7 = N(4;1, x)/(1-x)^7 with N(4;1, x) = 4-6*x+4*x^2-x^3, polynomial of second row of A062751.
a(0)=4, a(1)=22, a(2)=74, a(3)=195, a(4)=441, a(5)=896, a(6)=1680, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, May 02 2012

Extensions

Better description from Zerinvary Lajos, Dec 02 2005
Showing 1-4 of 4 results.