A063258
a(n) = binomial(n+5,4) - 1.
Original entry on oeis.org
4, 14, 34, 69, 125, 209, 329, 494, 714, 1000, 1364, 1819, 2379, 3059, 3875, 4844, 5984, 7314, 8854, 10625, 12649, 14949, 17549, 20474, 23750, 27404, 31464, 35959, 40919, 46375, 52359, 58904, 66044, 73814, 82250, 91389, 101269, 111929, 123409, 135750
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Guillaume Aupy, Julien Herrmann. Periodicity in optimal hierarchical checkpointing schemes for adjoint computations. Optimization Methods and Software, Volume 32, 2017 - Issue 3. Preprint
- D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Fifth column (r=4) of FS(4) staircase array
A062750.
-
[Binomial(n+5,4) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
-
[seq(binomial(n+5,4)-1,n=0..37)]; # Zerinvary Lajos, Nov 25 2006
-
Binomial[5+Range[0,50],4] -1 (* G. C. Greubel, Apr 22 2024 *)
-
{ for (n=0, 1000, write("b063258.txt", n, " ", binomial(n + 5, 4) - 1) ) } \\ Harry J. Smith, Aug 19 2009
-
[binomial(n+5,4) -1 for n in range(51)] # G. C. Greubel, Apr 22 2024
A334682
a(n) is the total number of down-steps after the final up-step in all 3-Dyck paths of length 4*n (n up-steps and 3*n down-steps).
Original entry on oeis.org
0, 3, 18, 118, 829, 6115, 46736, 366912, 2941528, 23981628, 198224910, 1657364566, 13992405626, 119118427610, 1021399476720, 8813544248100, 76475285228304, 666865500290884, 5840843616021192, 51361847992315320, 453282040123194425, 4013440075484640675
Offset: 0
For n=2 the a(2)=18 is the total number of down-steps after the last up-step in UdddUddd, UddUdddd, UdUddddd, UUdddddd.
First order differences of
A002293.
-
b:= proc(x, y) option remember; `if`(x=y, x,
`if`(y+30, b(x-1, y-1), 0))
end:
a:= n-> b(4*n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, May 09 2020
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 3*n, (8*(4*n-1)*
(2*n-1)*(4*n-3)*n*(229*n^2+303*n+98)*a(n-1))/
(3*(n-1)*(3*n+2)*(3*n+4)*(n+1)*(229*n^2-155*n+24)))
end:
seq(a(n), n=0..21); # Alois P. Heinz, May 09 2020
-
nmax = 21;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^4 + O[x]^(nmax + 2), nmax + 2];
CoefficientList[A[x], x] // Differences (* Jean-François Alcover, Aug 17 2020 *)
-
a(n) = {binomial(4*(n+1)+1, n+1)/(4*(n+1)+1) - binomial(4*n+1, n)/(4*n+1)} \\ Andrew Howroyd, May 08 2020
A027659
a(n) = binomial(n+2,2) + binomial(n+3,3) + binomial(n+4,4) + binomial(n+5,5).
Original entry on oeis.org
4, 18, 52, 121, 246, 455, 784, 1278, 1992, 2992, 4356, 6175, 8554, 11613, 15488, 20332, 26316, 33630, 42484, 53109, 65758, 80707, 98256, 118730, 142480, 169884, 201348, 237307, 278226, 324601, 376960, 435864, 501908, 575722, 657972, 749361, 850630, 962559
Offset: 0
-
[Binomial(n+6, 5) -(n+2): n in [0..60]]; // G. C. Greubel, Aug 01 2022
-
seq(1/120*(n+8)*(n+2)*(n+1)*(n^2+9*n+30), n=0..40);
-
Table[Sum[Binomial[n+i,i],{i,2,5}],{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20, -15,6,-1}, {4,18,52,121,246,455},30] (* Harvey P. Dale, Aug 18 2012 *)
Sum[(-1)^j*Binomial[4*j-2 + Range[0, 60], 4*j-3], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
-
a(n)=(n+8)*(n+2)*(n+1)*(n^2+9*n+30)/120 \\ Charles R Greathouse IV, Oct 07 2015
-
[binomial(n+6, 5) -(n+2) for n in (0..60)] # G. C. Greubel, Aug 01 2022
A062751
Coefficient array for certain polynomials N(4; k,x) (rising powers in x).
Original entry on oeis.org
1, 4, -6, 4, -1, 22, -80, 139, -140, 84, -28, 4, 140, -851, 2500, -4536, 5516, -4616, 2640, -990, 220, -22, 969, -8420, 35504, -94584, 175564, -237600, 239250, -179960, 100078, -40040, 10920, -1820, 140, 7084, -80776, 448056
Offset: 0
{1}; {4,-6,4,-1}; {22,-80,139,-140,84,-28,4}; ...; N(4; 1,x)= 4-6*x+4*x^2-x^3 =(2-x)*(2-2*x+x^2).
A062966
a(n) = C(3+n, n) + C(4+n, n) + C(5+n, n) + C(6+n, n).
Original entry on oeis.org
4, 22, 74, 195, 441, 896, 1680, 2958, 4950, 7942, 12298, 18473, 27027, 38640, 54128, 74460, 100776, 134406, 176890, 229999, 295757, 376464, 474720, 593450, 735930, 905814, 1107162, 1344469, 1622695, 1947296
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Seventh column (r=6) of FS(4) staircase array
A062750.
-
Table[Sum[Binomial[i+n,n],{i,3,6}],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{4,22,74,195,441,896,1680},30] (* Harvey P. Dale, May 02 2012 *)
-
{ for (n=0, 1000, a=binomial(3 + n, n) + binomial(4 + n, n) + binomial(5 + n, n) + binomial(6 + n, n); write("b062966.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 14 2009
Showing 1-5 of 5 results.
Comments