cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027660 a(n) = C(n+2, 2) + C(n+2, 3) + C(n+2, 4) + C(n+2, 5).

Original entry on oeis.org

1, 4, 11, 26, 56, 112, 210, 372, 627, 1012, 1573, 2366, 3458, 4928, 6868, 9384, 12597, 16644, 21679, 27874, 35420, 44528, 55430, 68380, 83655, 101556, 122409, 146566, 174406, 206336, 242792
Offset: 0

Views

Author

Keywords

Comments

Also, number of 135246-avoiding permutations of n+2 with exactly 1 descent. E.g., there are 57 permutations of 6 with exactly 1 descent. Of these, only the permutation 135246 contains the pattern 135246 so a(4)=56. - Mike Zabrocki, Nov 29 2004
If Y is a 2-subset of an n-set X then, for n>=5, a(n-5) is the number of 5-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

Crossrefs

Programs

  • Magma
    [(n^2-n+20)*Binomial(n+3,3)/20: n in [0..60]]; // G. C. Greubel, Aug 01 2022
  • Maple
    a:= n-> (n+3)*(n+2)*(n+1)*(n^2-n+20)/120;
    seq(a(n), n = 0..60);
  • Mathematica
    Sum[Binomial[3+Range[0,60], 2*j+1], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
  • Sage
    [binomial(n+3,5) +binomial(n+3,3) for n in range(0, 60)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = (n+3)*(n+2)*(n+1)*(n^2 - n + 20)/120.
G.f.: (1 - 2*x + 2*x^2)/(1-x)^6. - Mike Zabrocki, Nov 29 2004
a(n) = binomial(n+3,5) + binomial(n+3,3). - Zerinvary Lajos, Jul 24 2006, corrected Oct 01 2021
a(n) = A000389(n+5) - 2*A000332(n+3). - R. J. Mathar, Oct 01 2021
From G. C. Greubel, Aug 01 2022: (Start)
a(n) = Sum_{j=0..3} binomial(n+2, j+2).
E.g.f.: (1/120)*(120 +360*x +240*x^2 +80*x^3 +15*x^4 +x^5)*exp(x). (End)