cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080851 Square array of pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0

Views

Author

Paul Barry, Feb 21 2003

Keywords

Comments

The first row contains the triangular numbers, which are really two-dimensional, but can be regarded as degenerate pyramidal numbers. - N. J. A. Sloane, Aug 28 2015

Examples

			Array begins (n>=0, k>=0):
1,  3,  6, 10,  15,  21,  28,  36,  45,   55, ... A000217
1,  4, 10, 20,  35,  56,  84, 120, 165,  220, ... A000292
1,  5, 14, 30,  55,  91, 140, 204, 285,  385, ... A000330
1,  6, 18, 40,  75, 126, 196, 288, 405,  550, ... A002411
1,  7, 22, 50,  95, 161, 252, 372, 525,  715, ... A002412
1,  8, 26, 60, 115, 196, 308, 456, 645,  880, ... A002413
1,  9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
		

Crossrefs

Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
Cf. A057145, A027660 (antidiagonal sums).
See A257199 for another version of this array.

Programs

  • Derive
    vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
  • Maple
    A080851 := proc(n,k)
        binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
    end proc:
    seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
  • Mathematica
    pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)

Formula

T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016

A051601 Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 4, 4, 3, 4, 7, 8, 7, 4, 5, 11, 15, 15, 11, 5, 6, 16, 26, 30, 26, 16, 6, 7, 22, 42, 56, 56, 42, 22, 7, 8, 29, 64, 98, 112, 98, 64, 29, 8, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 10, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10
Offset: 0

Views

Author

Keywords

Comments

The number of spotlight tilings of an m X n rectangle missing the southeast corner. E.g., there are 2 spotlight tilings of a 2 X 2 square missing its southeast corner. - Bridget Tenner, Nov 10 2007
T(n,k) = A134636(n,k) - A051597(n,k). - Reinhard Zumkeller, Nov 23 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			From _Roger L. Bagula_, Feb 17 2009: (Start)
Triangle begins:
   0;
   1,  1;
   2,  2,   2;
   3,  4,   4,   3;
   4,  7,   8,   7,    4;
   5, 11,  15,  15,   11,    5;
   6, 16,  26,  30,   26,   16,   6;
   7, 22,  42,  56,   56,   42,   22,    7;
   8, 29,  64,  98,  112,   98,   64,   29,   8;
   9, 37,  93, 162,  210,  210,  162,   93,   37,   9;
  10, 46, 130, 255,  372,  420,  372,  255,  130,  46,  10;
  11, 56, 176, 385,  627,  792,  792,  627,  385, 176,  56, 11;
  12, 67, 232, 561, 1012, 1419, 1584, 1419, 1012, 561, 232, 67, 12. ... (End)
		

Crossrefs

Row sums give A000918(n+1).
Columns from 2 to 9, respectively: A000124; A000125, A055795, A027660, A055796, A055797, A055798, A055799 (except 1 for the last seven). [Bruno Berselli, Aug 02 2013]
Cf. A001477, A162551 (central terms).

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k->  Binomial(n, k+1) + Binomial(n, n-k+1) ))); # G. C. Greubel, Nov 12 2019
  • Haskell
    a051601 n k = a051601_tabl !! n !! k
    a051601_row n = a051601_tabl !! n
    a051601_tabl = iterate
                   (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [0]
    -- Reinhard Zumkeller, Nov 23 2012
    
  • Magma
    /* As triangle: */ [[Binomial(n,m+1)+Binomial(n,n-m+1): m in [0..n]]: n in [0..12]]; // Bruno Berselli, Aug 02 2013
    
  • Maple
    seq(seq(binomial(n,k+1) + binomial(n, n-k+1), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = Binomial[n, k+1] + Binomial[n, n-k+1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 17 2009; modified by G. C. Greubel, Nov 12 2019 *)
  • PARI
    T(n,k) = binomial(n, k+1) + binomial(n, n-k+1);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [[binomial(n, k+1) + binomial(n, n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(m,n) = binomial(m+n,m) - 2*binomial(m+n-2,m-1), up to offset and transformation of array to triangular indices. - Bridget Tenner, Nov 10 2007
T(n,k) = binomial(n, k+1) + binomial(n, n-k+1). - Roger L. Bagula, Feb 17 2009
T(0,n) = T(n,0) = n, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.

A055794 Triangle T read by rows: T(i,0)=1 for i >= 0; T(i,i)=1 for i=0,1,2,3; T(i,i)=0 for i >= 4; T(i,j) = T(i-1,j) + T(i-2,j-1) for 1<=j<=i-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 0, 1, 5, 7, 4, 1, 0, 1, 6, 11, 8, 3, 0, 0, 1, 7, 16, 15, 7, 1, 0, 0, 1, 8, 22, 26, 15, 4, 0, 0, 0, 1, 9, 29, 42, 30, 11, 1, 0, 0, 0, 1, 10, 37, 64, 56, 26, 5, 0, 0, 0, 0, 1, 11, 46, 93, 98, 56, 16, 1, 0, 0, 0, 0, 1, 12, 56, 130, 162, 112, 42, 6, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

T(i+j,j) is the number of strings (s(1),...,s(i+1)) of nonnegative integers s(k) such that 0<=s(k)-s(k-1)<=1 for k=2,3,...,i+1 and s(i+1)=j.
T(i+j,j) is the number of compositions of j consisting of i parts, all of in {0,1}.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 2, 1;
  1, 4, 4, 2, 0;
  1, 5, 7, 4, 1, 0;
  ...
T(7,4) counts the strings 3334, 3344, 3444, 2234, 2334, 2344, 1234.
T(7,4) counts the compositions 001, 010, 100, 011, 101, 110, 111.
		

Crossrefs

Row sums: A000204 (Lucas numbers).
Cf. subsequences T(2n+m,n): A000125 (m=0, cake numbers), A055795 (m=1), A027660 (m=2), A055796 (m=3), A055797 (m=4), A055798 (m=5), A055799 (m=6).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        elif k=n and n<4 then return 1;
        elif k=n then return 0;
        else return T(n-1,k) + T(n-2,k-1);
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jan 25 2020
  • Magma
    function T(n,k)
      if k eq 0 then return 1;
      elif k eq n and n lt 4 then return 1;
      elif k eq n then return 0;
      else return T(n-1,k) + T(n-2, k-1);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 25 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        elif k=n and n<4 then 1
        elif k=n then 0
        else T(n-1, k) + T(n-2, k-1)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 25 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n && n<4, 1, If[k==n, 0, T[n-1, k] + T[n-2, k-1] ]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 25 2020 *)
  • PARI
    T(n,k) = if(k==0, 1, if(k==n && n<4, 1, if(k==n, 0, T(n-1, k) + T(n-2, k-1) )));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 25 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return 1
        elif (k==n and n<4): return 1
        elif (k==n): return 0
        else: return T(n-1, k) + T(n-2, k-1)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 25 2020
    

Extensions

Typo in definition corrected by Georg Fischer, Dec 03 2021

A124725 Triangle read by rows: T(n,k) = binomial(n,k) + binomial(n,k+2) (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 8, 7, 4, 1, 11, 15, 15, 11, 5, 1, 16, 26, 30, 26, 16, 6, 1, 22, 42, 56, 56, 42, 22, 7, 1, 29, 64, 98, 112, 98, 64, 29, 8, 1, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10, 1, 56, 176, 385, 627, 792, 792, 627
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 05 2006

Keywords

Comments

Binomial transform of the infinite tridiagonal matrix with main diagonal, (1,1,1,...), subdiagonal, (0,0,0,...) and subsubdiagonal, (1,1,1,...). Sum of entries in row n = 2^(n+1) - n - 1 = A000325(n+1).
Riordan array ((1-2x+2x^2)/(1-x)^3, x/(1-x)). - Paul Barry, Apr 08 2011

Examples

			Row 3 = (4, 4, 3, 1), then row 4 = (7, 8, 7, 4, 1).
First few rows of the triangle are
   1;
   1,  1;
   2,  2,  1;
   4,  4,  3,  1;
   7,  8,  7,  4,  1;
  11, 15, 15, 11,  5,  1;
  16, 26, 30, 26, 16,  6,  1;
  ...
From _Paul Barry_, Apr 08 2011: (Start)
Production matrix begins
   1, 1;
   1, 1, 1;
   0, 0, 1, 1;
  -1, 0, 0, 1, 1;
   0, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 1, 1;
  -1, 0, 0, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
(End)
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->binomial(n,k)+binomial(n,k+2): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Binomial[n,k]+Binomial[n,k+2],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 12 2015 *)

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Feb 12 2014

Extensions

Edited by N. J. A. Sloane, Nov 29 2006

A362193 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 6 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, 1013, 1574, 2367, 3459, 4929, 6869, 9385, 12598, 16645, 21680, 27875, 35421, 44529, 55431, 68381, 83656, 101557, 122410, 146567, 174407, 206337, 242793, 284241, 331178, 384133, 443668, 510379, 584897
Offset: 0

Views

Author

Jessica A. Tomasko, Apr 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 6 with exactly one descent. For example, sigma can be chosen to be 124356, 241356, 361245, 512346, etc.

Crossrefs

Programs

  • Maple
    a:= n-> 1+(n-1)*n*(n+1)*(n*(n-5)+26)/120:
    seq(a(n), n=0..38);  # Alois P. Heinz, Apr 12 2023
  • Mathematica
    CoefficientList[Series[(1 - 5 x + 11 x^2 - 12 x^3 + 7 x^4 - x^5)/(1 - x)^6, {x, 0, 38}], x] (* Michael De Vlieger, Apr 12 2023 *)
  • PARI
    a(n) = 1 + sum(i=3, 6, binomial(n, i-1)) \\ Andrew Howroyd, Apr 10 2023

Formula

a(n) = 1 + Sum_{i=2..5} binomial(n,i).
G.f.: (1-5*x+11*x^2-12*x^3+7*x^4-x^5)/(1-x)^6.
a(0) = 1; a(1) = 1; a(n) = 1 + A027660(n-2), n >= 2. - Omar E. Pol, Apr 12 2023
Showing 1-5 of 5 results.