A177947
A symmetrical triangle sequence based on the beta function inverse and the spotlight tile A051601 as antidiagonal: t(n,m) = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 22, 13, 1, 1, 19, 45, 45, 19, 1, 1, 26, 79, 110, 79, 26, 1, 1, 34, 126, 224, 224, 126, 34, 1, 1, 43, 188, 406, 518, 406, 188, 43, 1, 1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1
Offset: 0
{1},
{1, 1},
{1, 4, 1},
{1, 8, 8, 1},
{1, 13, 22, 13, 1},
{1, 19, 45, 45, 19, 1},
{1, 26, 79, 110, 79, 26, 1},
{1, 34, 126, 224, 224, 126, 34, 1},
{1, 43, 188, 406, 518, 406, 188, 43, 1},
{1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1}
-
Clear[t, n]
t[n_, m_] = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]);
a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
A000124
Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
Original entry on oeis.org
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 0
a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
- Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 98.
- William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril, Toufik Mansour, and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.
- Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
- Christian Bean, Anders Claesson, and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.
- Henry Bottomley, Illustration of initial terms.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 45, 56.
- Peter M. Chema, Illustration of first 22 terms as corners of a double square spiral with digital root.
- David Coles, Triangle Puzzle.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.
- Matthew England, Russell Bradford, and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
- Richard K. Guy, Letter to N. J. A. Sloane.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]
- Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 386
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.
- Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Jim Loy, Triangle Puzzle.
- Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
- Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
- Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.
- Permutation Pattern Avoidance Library (PermPAL), Av(123,231)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.
- Herman P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments.
- Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.
- N. J. A. Sloane, Four hatpins can divide the plane into a(3) = 7 regions.
- N. J. A. Sloane, On single-deletion-correcting codes, 2002.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
- Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
- Eric Weisstein's World of Mathematics, Circle Division by Lines.
- Eric Weisstein's World of Mathematics, Plane Division by Lines.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
- Wikipedia, Floyd's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Cf.
A002061,
A002522,
A016028,
A055503,
A072863,
A144328,
A177862,
A263883,
A000127,
A005408,
A006261,
A016813,
A058331,
A080856,
A086514,
A161701,
A161702,
A161703,
A161704,
A161706,
A161707,
A161708,
A161710,
A161711,
A161712,
A161713,
A161715,
A051601,
A228918.
-
List([0..60],n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018
-
a000124 = (+ 1) . a000217
-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011
-
[n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014
-
A000124 := n-> n*(n+1)/2+1;
-
FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)
Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)
Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)
-
{a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */
-
def a(n): return n*(n+1)//2 + 1
print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021
-
(1 to 52).scanLeft(1)( + ) // Alonso del Arte, Feb 24 2019
A000918
a(n) = 2^n - 2.
Original entry on oeis.org
-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 68719476734, 137438953470
Offset: 0
a(4) = 14 because the 14 = 6 + 4 + 4 rationals (in lowest terms) for n = 3 are (see the Jun 14 2017 formula above): 1/2, 1, 3/2, 2, 5/2, 3; 1/4, 3/4, 5/4, 7/4; 1/8, 3/8, 5/8, 7/8. - _Wolfdieter Lang_, Jun 14 2017
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
- Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134. - Mohammad K. Azarian, Oct 27 2011
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 86, Exercise 3.16.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
- O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
- S. Bilotta, E. Grazzini, and E. Pergola, Enumeration of Two Particular Sets of Minimal Permutations, J. Int. Seq. 18 (2015) 15.10.2
- R. B. Campbell, The effect of inbreeding constraints and offspring distribution on time to the most recent common ancestor, Journal of Theoretical Biology, Volume 382, 7 October 2015, Pages 74-80.
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- M. A. Hill, M. J. Hopkins and D. C. Ravenel, On the non-existence of elements of Kervaire invariant one. - _N. J. A. Sloane_, Sep 27 2010
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 77
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Japanese Mathematical Olympiad 1993, Final Round - Problem 2, Feb 11 1993.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- T. Manneville, V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
- Kanstantsin Pashkovich, Symmetry in Extended Formulations of the Permutahedron [sic], arXiv:0912.3446 [math.CO], 2009-2013. [_Jonathan Vos Post_, Dec 17 2009]
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Pratik Poddar, Consecutive Heads Puzzle, Oct 2009.
- H. P. Robinson, Letter to N. J. A. Sloane, Sep 1975
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- Eric Weisstein's World of Mathematics, Sphere Line Picking
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
- Index to sequences related to Olympiads.
A000125
Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.
Original entry on oeis.org
1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0
a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
- W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. Alexandersson and O. Nabawanda, Peaks are preserved under run-sorting, arXiv:2104.04220 [math.CO], 2021.
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- R. K. Guy, Letter to N. J. A. Sloane
- Zachary Hoelscher, Semicomplete Arithmetic Sequences, Division of Hypercubes, and the Pell Constant, arXiv:2102.07083 [math.NT], 2021. Mentions this sequence.
- Marie Lejeune, On the k-binomial equivalence of finite words and k-binomial complexity of infinite words, Ph. D. Thesis, Université de Liège (Belgium, 2021).
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Svante Linusson, The number of M-sequences and f-vectors, Combinatorica, vol 19 no 2 (1999) 255-266.
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Sorting inversion sequences, arXiv:2401.06662 [math.CO], 2024. See page 7.
- R. J. Mathar, The number of binary mxm matrices with at most k 1's in each row or column, (2014) Table 3 column 1.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Sebastian Mizera and Sabrina Pasterski, Celestial Geometry, arXiv:2204.02505 [hep-th], 2022.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
- L. Pudwell and A. Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- H. P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments
- Eric Weisstein's World of Mathematics, Cake Number
- Eric Weisstein's World of Mathematics, Cube Division by Planes
- Eric Weisstein's World of Mathematics, Cylinder Cutting
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Space Division by Planes
- Eric Weisstein's World of Mathematics, Triangular Graph
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000124,
A003600,
A005408,
A016813,
A086514,
A058331,
A002522,
A161701-
A161705,
A000127,
A161706-
A161708,
A080856,
A161710-
A161713,
A161715,
A006261,
A063865,
A051601,
A077043,
A002620,
A123596.
-
[(n^3+5*n+6)/6: n in [0..50]]; // Vincenzo Librandi, Nov 08 2014
-
A000125 := n->(n+1)*(n^2-n+6)/6;
-
Table[(n^3 + 5 n + 6)/6, {n, 0, 50}] (* Harvey P. Dale, Jan 19 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 4, 8}, 50] (* Harvey P. Dale, Jan 19 2013 *)
Table[Binomial[n, 3] + n, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
-
a(n)=(n^2+5)*n/6+1 \\ Charles R Greathouse IV, Jun 15 2011
-
Vec((1-2*x+2*x^2)/((1-x)^4) + O(x^100)) \\ Altug Alkan, Oct 16 2015
-
def A000125_gen(): # generator of terms
a, b, c = 1, 1, 1
while True:
yield a
a, b, c = a+b, b+c, c+1
it = A000125_gen()
A000125_list = [next(it) for in range(50)] # _Cole Dykstra, Aug 03 2022
A228196
A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.
Original entry on oeis.org
0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1
The start of the sequence as a triangular array read by rows:
0;
1, 2;
4, 3, 4;
9, 7, 7, 8;
16, 16, 14, 15, 16;
25, 32, 30, 29, 31, 32;
36, 57, 62, 59, 60, 63, 64;
Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)).
A007318 (1,1),
A008949 (1,2^n),
A029600 (2,3),
A029618 (3,2),
A029635 (1,2),
A029653 (2,1),
A037027 (Fibonacci(n),1),
A051601 (n,n) n>=0,
A051597 (n,n) n>0,
A051666 (n^2,n^2),
A071919 (1,0),
A074829 (Fibonacci(n), Fibonacci(n)),
A074909 (1,n),
A093560 (3,1),
A093561 (4,1),
A093562 (5,1),
A093563 (6,1),
A093564 (7,1),
A093565 (8,1),
A093644 (9,1),
A093645 (10,1),
A095660 (1,3),
A095666 (1,4),
A096940 (1,5),
A096956 (1,6),
A106516 (3^n,1),
A108561(1,(-1)^n),
A132200 (4,4),
A134636 (2n+1,2n+1),
A137688 (2^n,2^n),
A160760 (3^(n-1),1),
A164844(1,10^n),
A164847 (100^n,1),
A164855 (101*100^n,1),
A164866 (101^n,1),
A172171 (1,9),
A172185 (9,11),
A172283 (-9,11),
A177954 (int(n/2),1),
A193820 (1,2^n),
A214292 (n,-n),
A227074 (4^n,4^n),
A227075 (3^n,3^n),
A227076 (5^n,5^n),
A227550 (n!,n!),
A228053 ((-1)^n,(-1)^n),
A228074 (Fibonacci(n), n).
-
T:= function(n,k)
if k=0 then return n^2;
elif k=n then return 2^n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
T:= proc(n, k) option remember;
if k=0 then n^2
elif k=n then 2^k
else T(n-1, k-1) + T(n-1, k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
-
T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
-
T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
-
def funcL(n):
q = n**2
return q
def funcR(n):
q = 2**n
return q
for n in range (1,9871):
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2-1
j=(t*t+3*t+4)/2-n-1
sum1=0
sum2=0
for m1 in range (1,i+1):
sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
for m2 in range (1,j+1):
sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
sum=sum1+sum2
-
@CachedFunction
def T(n, k):
if (k==0): return n^2
elif (k==n): return 2^n
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
A055795
a(n) = binomial(n,4) + binomial(n,2).
Original entry on oeis.org
0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
Offset: 1
- James Spahlinger, Table of n, a(n) for n = 1..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- Milan Janjic, Two Enumerative Functions
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013
-
A055795:=n->binomial(n,4)+binomial(n,2); # Zerinvary Lajos, Jul 24 2006
-
Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *)
Total[Binomial[Range[20], #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *)
-
A055795(n):=n*(n^3-6*n^2+23*n-18)/24$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */
-
a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013
Offset corrected and Sellers formula adjusted by
Gary Detlefs, Nov 28 2011
A162551
a(n) = 2 * C(2*n,n-1).
Original entry on oeis.org
0, 2, 8, 30, 112, 420, 1584, 6006, 22880, 87516, 335920, 1293292, 4992288, 19315400, 74884320, 290845350, 1131445440, 4407922860, 17194993200, 67156001220, 262564816800, 1027583214840, 4025232800160, 15780742227900, 61915399071552
Offset: 0
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016
- Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks, Discrete Math, 312(24) (2012), 3649-3655. MR2979494. See Th. 1.1, case 2. - _N. J. A. Sloane_, Nov 07 2012
-
a162551 n = a051601 (2 * n) n -- Reinhard Zumkeller, Aug 05 2013
-
[2*n*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Jul 19 2011
-
nn=25;Drop[CoefficientList[Series[(1-2x)/(1-4x)^(1/2),{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 23 2013 *)
Table[2Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Oct 26 2016 *)
-
a(n) = 2*binomial(2*n,n-1) \\ Charles R Greathouse IV, Oct 23 2023
A051597
Rows of triangle formed using Pascal's rule except begin and end n-th row with n+1.
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 7, 7, 4, 5, 11, 14, 11, 5, 6, 16, 25, 25, 16, 6, 7, 22, 41, 50, 41, 22, 7, 8, 29, 63, 91, 91, 63, 29, 8, 9, 37, 92, 154, 182, 154, 92, 37, 9, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11
Offset: 0
Triangle begins as:
1;
2, 2;
3, 4, 3;
4, 7, 7, 4;
5, 11, 14, 11, 5;
-
T:= function(n,k)
if k<0 or k>n then return 0;
elif k=0 or k=n then return n+1;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
a051597 n k = a051597_tabl !! n !! k
a051597_row n = a051597_tabl !! n
a051597_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [1]
-- Reinhard Zumkeller, Nov 23 2012
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq 0 or k eq n then return n+1;
else return T(n-1,k-1) + T(n-1,k);
end if;
return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
-
T:= proc(n, k) option remember;
`if`(k<0 or k>n, 0,
`if`(k=0 or k=n, n+1,
T(n-1, k-1) + T(n-1, k) ))
end:
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, May 27 2013
-
NestList[Append[ Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 1], #[[1]] + 1] &, {1}, 10] // Grid (* Geoffrey Critzer, May 26 2013 *)
T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[k==0 || k==n, n+1, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
-
T(n,k) = if(k<0 || k>n, 0, if(k==0 || k==n, n+1, T(n-1, k-1) + T(n-1, k) ));
for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 18 2019
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0 or k==n): return n+1
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
A134636
Triangle formed by Pascal's rule given borders = 2n+1.
Original entry on oeis.org
1, 3, 3, 5, 6, 5, 7, 11, 11, 7, 9, 18, 22, 18, 9, 11, 27, 40, 40, 27, 11, 13, 38, 67, 80, 67, 38, 13, 15, 51, 105, 147, 147, 105, 51, 15, 17, 66, 156, 252, 294, 252, 156, 66, 17, 19, 83, 222, 408, 546, 546, 408, 222, 83, 19, 21, 102, 305, 630, 954, 1092, 954, 630, 305, 102, 21
Offset: 0
First few rows of the triangle:
1;
3, 3;
5, 6, 5;
7, 11, 11, 7;
9, 18, 22, 18, 9;
11, 27, 40, 40, 27, 11;
13, 38, 67, 80, 67, 38, 13;
...
-
a134636 n k = a134636_tabl !! n !! k
a134636_row n = a134636_tabl !! n
a134636_tabl = iterate (\row -> zipWith (+) ([2] ++ row) (row ++ [2])) [1]
-- Reinhard Zumkeller, Nov 23 2012
-
T:= proc(n,k) option remember;
`if`(k<0 or k>n, 0,
`if`(k=0 or k=n, 2*n+1,
T(n-1, k-1) + T(n-1, k) ))
end:
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, May 26 2013
-
NestList[Append[Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 2], #[[1]] + 2] &, {1}, 10] // Grid (* Geoffrey Critzer, May 26 2013 *)
T[n_, k_] := Binomial[n, k-1] + Binomial[n, k] + 2 Binomial[n, k+1] + Binomial[n, n-k+1];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
A027660
a(n) = C(n+2, 2) + C(n+2, 3) + C(n+2, 4) + C(n+2, 5).
Original entry on oeis.org
1, 4, 11, 26, 56, 112, 210, 372, 627, 1012, 1573, 2366, 3458, 4928, 6868, 9384, 12597, 16644, 21679, 27874, 35420, 44528, 55430, 68380, 83655, 101556, 122409, 146566, 174406, 206336, 242792
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[(n^2-n+20)*Binomial(n+3,3)/20: n in [0..60]]; // G. C. Greubel, Aug 01 2022
-
a:= n-> (n+3)*(n+2)*(n+1)*(n^2-n+20)/120;
seq(a(n), n = 0..60);
-
Sum[Binomial[3+Range[0,60], 2*j+1], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
-
[binomial(n+3,5) +binomial(n+3,3) for n in range(0, 60)] # Zerinvary Lajos, May 17 2009
Showing 1-10 of 23 results.
Comments