cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003956 Order of complex Clifford group of degree 2^n arising in quantum coding theory.

Original entry on oeis.org

8, 192, 92160, 743178240, 97029351014400, 203286581427673497600, 6819500449352277792129024000, 3660967964237442812098963052691456000, 31446995505814020383166371418359014222725120000
Offset: 0

Views

Author

Keywords

Crossrefs

Equals twice A027638.

Programs

  • GAP
    List([0..10], n-> 2^((n+1)^2 +2)*Product([1..n], j-> 4^j -1) ); # G. C. Greubel, Sep 24 2019
    
  • Magma
    [n eq 0 select 8 else 2^((n+1)^2+2)*(&*[4^j-1: j in [1..n]]): n in [0..10]]; // G. C. Greubel, Sep 24 2019
    
  • Maple
    a(n):= 2^(n^2+2*n+3)*mul(4^j-1, j=1..n); seq(a(n), n=0..10); # modified by G. C. Greubel, Sep 24 2019
  • Mathematica
    Table[2^(n^2+2n+3) Product[4^j-1,{j,n}],{n,0,10}] (* Harvey P. Dale, Nov 03 2017 *)
  • PARI
    vector(11, n, 2^(n^2 +2)*prod(j=1,n-1, 4^j-1) ) \\ G. C. Greubel, Sep 24 2019
    
  • Python
    from math import prod
    def A003956(n): return prod((1<Chai Wah Wu, Jun 20 2022
  • Sage
    [2^((n+1)^2 +2)*product(4^j -1 for j in (1..n)) for n in (0..10)] # G. C. Greubel, Sep 24 2019
    

Formula

From Amiram Eldar, Jul 06 2025: (Start)
a(n) = 2^(n^2+2*n+3) * Product_{k=1..n} (4^k-1).
a(n) ~ c * 2^(2*n^2+3*n+3), where c = A100221. (End)

A027633 Molien series for full 8 X 8 Siegel modular group H_3 of order 371589120.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 31, 34, 53, 64, 89, 109, 152, 179, 245, 296, 384, 467, 601, 716, 911, 1090, 1351, 1614, 1986, 2342, 2856, 3364, 4037, 4742, 5653, 6578, 7791, 9036, 10592, 12243, 14268, 16380, 18990, 21724, 24999
Offset: 0

Views

Author

Keywords

Examples

			1 + x^4 + x^6 + 2*x^8 + 2*x^10 + 5*x^12 + 4*x^14 + 9*x^16 + 10*x^18 + 16*x^20 + ...
		

Crossrefs

Cf. A027672, A027638. Bisection gives A039946.

Programs

  • Sage
    R. = PowerSeriesRing(ZZ,40);
    g = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56;
    f = g + x^112*g(1/x);
    h = f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30));
    [h.list()[2*i] for i in range(20)] # Andy Huchala, Mar 02 2022

Formula

Reference gives explicit formula for Molien series.
Molien series is f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30)),
where f(x) = g(x) + x^112*g(1/x), g(x) = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56.

A027638 Order of 2^n X 2^n unitary group H_n acting on Siegel modular forms.

Original entry on oeis.org

4, 96, 46080, 371589120, 48514675507200, 101643290713836748800, 3409750224676138896064512000, 1830483982118721406049481526345728000, 15723497752907010191583185709179507111362560000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027638:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[4^j-1: j in [1..n]]) >;
    [A027638(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
    
  • Maple
    seq( 2^(n^2+2*n+2)*product(4^i -1, i=1..n), n=0..12);
  • Mathematica
    Table[2^(n^2+2n+2) Product[4^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, May 21 2018 *)
  • PARI
    a(n) = my(ret=1); for(i=1,n, ret = ret<<(2*i)-ret); ret << (n^2+2*n+2); \\ Kevin Ryde, Aug 13 2022
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027638(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 4, 4)
    [A027638(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
    

Formula

a(n) = A003956(n)/2.
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (4^j - 1).
a(n) ~ c * 2^(2*n^2+3*n+2), where c = A100221. - Amiram Eldar, Jul 06 2025

A051354 Expansion of Molien series for 16-dimensional complex Clifford group of genus 4 and order 97029351014400.

Original entry on oeis.org

1, 1, 2, 7, 19, 52, 172, 550, 1782, 5845, 18508, 56345, 164157, 454518, 1196924, 3003750, 7198311, 16523847, 36447873, 77478005, 159172517, 316874035, 612729396, 1153359711, 2117566545, 3798941401, 6670327291, 11479693332, 19390588953, 32185179449, 52553840336
Offset: 0

Views

Author

Keywords

Comments

Oura gives an explicit formula for the Molien series that produces A027672; the present sequence is the subsequence formed from the terms whose exponents are multiples of 8 (that is, every other term of A027672). In other words, the present Molien series is (f(x)+f(z*x))/2, where z = exp(2*Pi*I/8) and f(x) is the Molien series for the group H_4 given explicitly by Oura in Theorem 4.1.

Examples

			1 + t^8 + 2*t^16 + 7*t^24 + 19*t^32 + 52*t^40 + 172*t^48 + ...
		

Crossrefs

Programs

  • Mathematica
    (* See link for Mathematica program. *)

Formula

a(n) = A027672(2*n).

Extensions

Edited by Georg Fischer, Jan 24 2021

A144060 Expansion of Molien series for the ring of genus 5 code polynomials for Type II codes.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 8, 8, 34, 60, 203, 553, 2063, 7359, 30811, 127416, 541644, 2235677, 8966371, 34413747, 126465849, 443858877, 1490702752, 4796609651, 14821521743, 44071296447, 126388352322, 350298687803, 940211047828, 2448320130626, 6196158876181
Offset: 0

Views

Author

N. J. A. Sloane, Dec 22 2008, following a suggestion from G. Nebe

Keywords

Examples

			1 + x^8 + 2*x^16 + 2*x^20 + 8*x^24 + 8*x^28 + 34*x^32 + 60*x^36 + 203*x^40 + 553*x^44 + 2063*x^48 + 7359*x^52 + 30811*x^56 + 127416*x^60 + 541644*x^64 + 2235677*x^68 + 8966371*x^72 + 34413747*x^76 + 126465849*x^80 + 443858877*x^84 + 1490702752*x^88 + 4796609651*x^92 + 14821521743*x^96 + .....
		

Crossrefs

Programs

  • Mathematica
    (* See link for Mathematica program. *)

Formula

Oura (see link) gives the Molien series explicitly.

Extensions

More terms from Ray Chandler, Mar 23 2017
Showing 1-5 of 5 results.