cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027726 Numbers k such that k^2+k+9 is a palindrome.

Original entry on oeis.org

0, 1, 9, 11, 13, 22, 30, 31, 138, 300, 304, 305, 331, 438, 969, 1141, 1413, 2367, 3000, 3144, 3881, 9854, 30000, 30605, 72062, 106801, 114141, 125206, 128348, 300000, 315165, 963304, 980560, 989154, 2378507, 3000000, 3040604, 3045679, 3152290, 3932806
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 9; Select[Range[0, 3*10^5], palQ@ f@ # &]

Extensions

More terms from Giovanni Resta, Aug 29 2018

A027727 Palindromes of form k^2 + k + 9.

Original entry on oeis.org

9, 11, 99, 141, 191, 515, 939, 1001, 19191, 90309, 92729, 93339, 109901, 192291, 939939, 1303031, 1997991, 5605065, 9003009, 9887889, 15066051, 97111179, 900030009, 936696639, 5193003915, 11406560411, 13028282031, 15676667651, 16473337461, 90000300009
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 35 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 9; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)
    Select[Table[k^2+k+9,{k,0,300000}],PalindromeQ] (* Harvey P. Dale, Nov 21 2024 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A174152 Primes p such that p^2+p+9 is also prime.

Original entry on oeis.org

13, 19, 43, 79, 139, 151, 211, 271, 373, 433, 523, 643, 739, 751, 769, 853, 919, 1033, 1051, 1093, 1129, 1171, 1423, 1429, 1471, 1531, 1579, 1663, 1741, 1759, 1789, 1933, 2053, 2281, 2389, 2521, 2689, 2731, 2749, 2833, 3061, 3109, 3163, 3271, 3313, 3319
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2010

Keywords

Examples

			For p=13, 13^2+13+9=191; p=19, 19^2+19+9=389; p=43, 43^2+43+9=1901.
		

Crossrefs

Subsequence of A002476.

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p+9)];
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[#^2 + # + 9]&] (* Vincenzo Librandi, Apr 16 2013 *)

Formula

A027757 INTERSECT A000040. [From R. J. Mathar, Jul 06 2010]
Showing 1-3 of 3 results.