cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027760 Denominator of Sum_{p prime, p-1 divides n} 1/p.

Original entry on oeis.org

2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2
Offset: 1

Views

Author

Keywords

Comments

The GCD of integers x^(n+1)-x, for all integers x. - Roger Cuculiere (cuculier(AT)imaginet.fr), Jan 19 2002
If each x in a ring satisfies x^(n+1)=x, the characteristic of the ring is a divisor of a(n) (Rosenblum 1977). - Daniel M. Rosenblum (DMRosenblum(AT)world.oberlin.edu), Sep 24 2008
The denominators of the Bernoulli numbers for n>0. B_n sequence begins 1, -1/2, 1/6, 0/2, -1/30, 0/2, 1/42, 0/2, ... This is an alternative version of A027642 suggested by the theorem of Clausen. To add a(0) = 1 has been proposed in A141056. - Peter Luschny, Apr 29 2009
For N > 1, a(n) is the greatest number k such that x*y^n ==y*x^n (mod k) for any integers x and y. Example: a(19) = 798 because x*y^19 ==y*x^19 (mod 798). - Michel Lagneau, Apr 21 2012
a(n) is the largest k such that b^(n+1) == b (mod k) for every integer b. - Mateusz Szymański, Feb 18 2016, corrected by Thomas Ordowski, Jul 01 2018
When n is even, a(n) is the product of the distinct primes dividing the denominator of zeta(1-n), where zeta(s) is the Riemann zeta function. - Griffin N. Macris, Jun 13 2016
If n+1 is prime, then A002322(a(n)) = n. Composite numbers n+1 such that A002322(a(n)) = n are in A317210. - Max Alekseyev and Thomas Ordowski, Jul 09 2018

Examples

			1/2, 5/6, 1/2, 31/30, 1/2, 41/42, 1/2, 31/30, 1/2, 61/66, 1/2, 3421/2730, 1/2, 5/6, 1/2, 557/510, ...
		

Crossrefs

Programs

  • Maple
    A027760 := proc(n) local s,p; s := 0 ; p := 2; while p <= n+1 do if n mod (p-1) = 0 then s := s+1/p; fi; p := nextprime(p) ; od: denom(s) ; end: # R. J. Mathar, Aug 12 2008
  • Mathematica
    clausen[n_] := Product[i, {i, Select[ Map[ # + 1 &, Divisors[n]], PrimeQ]}]
    Table[clausen[i], {i, 1, 20}] (* Peter Luschny, Apr 29 2009 *)
    f[n_] := Times @@ Select[Divisors@n + 1, PrimeQ]; Array[f, 56] (* Robert G. Wilson v, Apr 25 2012 *)
  • PARI
    a(n)=denominator(sumdiv(n,d,if(isprime(d+1),1/(d+1)))) \\ Charles R Greathouse IV, Jul 08 2011
    
  • PARI
    a(n)=my(pr=1);fordiv(n,d,if(isprime(d+1),pr*=d+1));pr \\ Charles R Greathouse IV, Jul 08 2011
    
  • Sage
    def A027760(n):
        return mul(filter(lambda s: is_prime(s), map(lambda i: i+1, divisors(n))))
    [A027760(n) for n in (1..56)]  # Peter Luschny, May 23 2013

Formula

a(2*k) = A091137(2*k)/A091137(2*k-1). - Paul Curtz, Aug 05 2008
a(n) = product_{p prime, p-1 divides n}. - Eric M. Schmidt, Aug 01 2013
a(2n-1) = 2. - Robert G. Wilson v, Jul 23 2018

Extensions

Formula submitted with A141417 added by R. J. Mathar, Nov 17 2010