cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027765 a(n) = (n+1)*binomial(n+1,5).

Original entry on oeis.org

5, 36, 147, 448, 1134, 2520, 5082, 9504, 16731, 28028, 45045, 69888, 105196, 154224, 220932, 310080, 427329, 579348, 773927, 1020096, 1328250, 1710280, 2179710, 2751840, 3443895, 4275180, 5267241, 6444032, 7832088, 9460704, 11362120, 13571712, 16128189
Offset: 4

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 7-subsequences of [ 1, n ] with just 1 contiguous pair.
8*a(n) is the number of permutations of (n+1) symbols that 5-commute with an (n+1)-cycle (see A233440 for definition), where 8 = A000757(5). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Magma
    [(n+1)*Binomial(n+1,5): n in [4..40]]; // Vincenzo Librandi, Aug 09 2017
  • Maple
    a:=n->(sum((numbcomp(n,6)), j=2..n)):seq(a(n), n=6..34); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    Table[(n+1)Binomial[n+1,5],{n,4,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{5,36,147,448,1134,2520,5082},40] (* Harvey P. Dale, Jan 15 2017 *)

Formula

G.f.: (5+x)*x^4/(1-x)^7.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=4} 1/a(n) = 5*Pi^2/6 - 575/72.
Sum_{n>=4} (-1)^n/a(n) = 5*Pi^2/12 + 160*log(2)/3 - 2945/72. (End)

Extensions

Incorrect formula deleted by R. J. Mathar, Feb 13 2016