A027765 a(n) = (n+1)*binomial(n+1,5).
5, 36, 147, 448, 1134, 2520, 5082, 9504, 16731, 28028, 45045, 69888, 105196, 154224, 220932, 310080, 427329, 579348, 773927, 1020096, 1328250, 1710280, 2179710, 2751840, 3443895, 4275180, 5267241, 6444032, 7832088, 9460704, 11362120, 13571712, 16128189
Offset: 4
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[(n+1)*Binomial(n+1,5): n in [4..40]]; // Vincenzo Librandi, Aug 09 2017
-
Maple
a:=n->(sum((numbcomp(n,6)), j=2..n)):seq(a(n), n=6..34); # Zerinvary Lajos, Aug 26 2008
-
Mathematica
Table[(n+1)Binomial[n+1,5],{n,4,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{5,36,147,448,1134,2520,5082},40] (* Harvey P. Dale, Jan 15 2017 *)
Formula
G.f.: (5+x)*x^4/(1-x)^7.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=4} 1/a(n) = 5*Pi^2/6 - 575/72.
Sum_{n>=4} (-1)^n/a(n) = 5*Pi^2/12 + 160*log(2)/3 - 2945/72. (End)
Extensions
Incorrect formula deleted by R. J. Mathar, Feb 13 2016
Comments