cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027818 a(n) = (n+1)*binomial(n+6,6).

Original entry on oeis.org

1, 14, 84, 336, 1050, 2772, 6468, 13728, 27027, 50050, 88088, 148512, 241332, 379848, 581400, 868224, 1268421, 1817046, 2557324, 3542000, 4834830, 6512220, 8665020, 11400480, 14844375, 19143306, 24467184, 31011904, 39002216, 48694800, 60381552, 74393088, 91102473
Offset: 0

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 13-subsequences of [ 1, n ] with just 6 contiguous pairs.

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=7). Partial sums of A050403.

Programs

  • GAP
    List([0..30], n-> (n+1)*Binomial(n+6,6)); # G. C. Greubel, Aug 29 2019
  • Haskell
    a027818 n = (n + 1) * a007318' (n + 6) 6
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [(n+1)*Binomial(n+6,6): n in [0..30]]; // G. C. Greubel, Aug 29 2019
    
  • Maple
    seq((n+1)*binomial(n+6,6), n=0..30); # Zerinvary Lajos, Oct 19 2006
  • Mathematica
    Table[(n+1)*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Aug 29 2019 *)
  • PARI
    a(n) = (n+1)*binomial(n+6,6) \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [(n+1)*binomial(n+6,6) for n in (0..30)] # G. C. Greubel, Aug 29 2019
    

Formula

G.f.: (1+6*x)/(1-x)^8.
a(n) = A245334(n+6,6)/A000142(6). - Reinhard Zumkeller, Aug 31 2014
E.g.f.: (7! +9360*x +20520*x^2 +15000*x^3 +4650*x^4 +666*x^5 +43*x^6 + x^7)*exp(x)/7!. - G. C. Greubel, Aug 29 2019
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2 - 5269/600.
Sum_{n>=0} (-1)^n/a(n) = Pi^2/2 - 512*log(2)/5 + 40189/600. (End)