A034266 Partial sums of A027818.
0, 1, 15, 99, 435, 1485, 4257, 10725, 24453, 51480, 101530, 189618, 338130, 579462, 959310, 1540710, 2408934, 3677355, 5494401, 8051725, 11593725, 16428555, 22940775, 31605795, 43006275, 57850650, 76993956, 101461140, 132473044, 171475260, 220170060, 280551612
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
GAP
List([0..35], n-> (7*n+1)*Binomial(n+6,7)/8); # G. C. Greubel, Aug 29 2019
-
Magma
[0] cat [(7*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
-
Maple
f:=n->(7*n+8)*binomial(n+7, 7)/8; [seq(f(n),n=-1..40)]; # N. J. A. Sloane, Mar 25 2015
-
Mathematica
CoefficientList[Series[x(1+6x)/(1-x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *) Table[(7*n+1)*Binomial[n+6,7]/8, {n,0,35}] (* G. C. Greubel, Aug 29 2019 *)
-
PARI
lista(nn) = for (n=0, nn, print1((7*n+1)*binomial(n+6,7)/8, ", ")); \\ Michel Marcus, Mar 20 2015
-
Sage
[(7*n+1)*binomial(n+6,7)/8 for n in (0..35)] # G. C. Greubel, Aug 29 2019
Formula
a(n) = (7*n+1)*binomial(n+6, 7)/8.
G.f.: x*(1+6*x)/(1-x)^9.
E.g.f.: x*(8! +262080*x +383040*x^2 +210000*x^3 +52080*x^4 +6216*x^5 + 344*x^6 +7*x^7)*exp(x)/8!
Extensions
Better description from Barry E. Williams, Jan 25 2000
Corrected and extended by N. J. A. Sloane, Apr 21 2000
More terms from Michel Marcus, Mar 20 2015
Comments