cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027826 Inverse binomial transform of a_0 = 1, a_1, a_2, etc. is a_0, 0, a_1, 0, a_2, 0, etc.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 50, 120, 290, 706, 1732, 4280, 10644, 26612, 66824, 168384, 425481, 1077529, 2733746, 6945812, 17669149, 44994345, 114682042, 292544200, 746831570, 1907983346, 4877966628, 12479883736, 31951158024, 81858610968, 209865391600, 538408691456
Offset: 0

Views

Author

Keywords

Comments

The self-convolution equals A051163. - Paul D. Hanna, Nov 23 2004
Equals row sums of triangle A152193. - Gary W. Adamson, Nov 28 2008

Examples

			Array of successive differences (col. 1 is the inverse binomial transform):
1, 1,  2,  4,  9, 21, 50, ...
0, 1,  2,  5, 12, 29, 70, ...
1, 1,  3,  7, 17, 41, ...
0, 2,  4, 10, 24, 59, ...
2, 2,  6, 14, 35, 87, ...
0, 4,  8, 21, 52, ...
4, 4, 13, 31, 79, ...
0, 9, 18, 48, ...
9, 9, 30, ...
...
		

Crossrefs

Cf. A051163.
Cf. A152193. - Gary W. Adamson, Nov 28 2008

Programs

  • Maple
    a:= proc(n) option remember; add(`if`(k=0, 1,
          `if`(k::odd, 0, a(k/2)))*binomial(n, k), k=0..n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 08 2015
  • Mathematica
    a[n_] := a[n] = Sum[If[k == 0, 1, If[OddQ[k], 0, a[k/2]]]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 20 2017, translated from Maple *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=subst(A,x,(x/(1-x))^2)/(1-x)); polcoeff(A,n))
    
  • PARI
    a=List();for(n=1,100,listput(a,sum(i=1,n\2,a[i]*binomial(n,2*i),1))) \\ M. F. Hasler, Aug 19 2015

Formula

G.f. A(x) satisfies A(x^2) = A(x/(1+x))/(1+x) and A(x) = A(x^2/(1-x)^2)/(1-x).
The recursive formula A[n+1] = A[n](x^2/(1-x)^2)/(1-x), A[0]=1, yields exactly 2^n terms after n iterations: A(x) - A[n](x) = x^(2^n) + (2^n+1)*x^(2^n+1) + O(x^(2^n+2)). For example, A[4] = (1-x)^3*(1-2*x-x^2)/((1-2*x)(1-4*x+4*x^2-2*x^4)) = A(x) - x^16 - 17*x^17 + O(x^18). - M. F. Hasler, Aug 19 2015
E.g.f.: exp(x) * Sum_{n>=0} a(n) * x^(2*n) / (2*n)!. - Ilya Gutkovskiy, Feb 26 2022
The expansion of exp(Sum_{n >= 1} a(n)*(2*x)^n/n!) = 1 + 2*x + 6*x^2 + 20*x^3 + 74*x^4 + 292*x^5 + 1204*x^6 + ... appears to have integer coefficients. Equivalently, the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for positive integers k and n and all primes p >= 3. - Peter Bala, Jan 11 2023

Extensions

Incorrect g.f. and formulas removed by R. J. Mathar, Oct 02 2012
Incorrect g.f.s removed by Peter Bala, Jul 07 2015