A027854 Mutinous numbers: n > 1 such that n/p^k > p, where p is the largest prime dividing n and p^k is the highest power of p dividing n.
12, 24, 30, 36, 40, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 96, 105, 108, 112, 120, 126, 132, 135, 140, 144, 150, 154, 160, 165, 168, 175, 176, 180, 182, 189, 192, 195, 198, 200, 208, 210, 216, 220, 224, 225, 231, 234, 240, 252, 260, 264, 270, 273, 275, 280
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Jul 13 2017: (Start) 12 is a term since 12/A053585(12) = 12/3 = 4, A006530(12) = 3, and 4 > 3. 30 is a term since 30/A053585(30) = 30/5 = 6, A006530(30) = 5, and 6 > 5. (End)
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 280, Function[n, (n/Apply[Power, Last@ #]) > #[[-1, 1]] &@ FactorInteger[n]]] (* Michael De Vlieger, Jul 13 2017 *)
-
PARI
isok(n) = {my(f = factor(n)); my(maxf = #f~); my(p = f[maxf, 1]); my(pk = f[maxf, 2]); (n/p^pk) > p;} \\ Michel Marcus, Jan 16 2014
-
Python
from sympy import factorint, primefactors def a053585(n): if n==1: return 1 p = primefactors(n)[-1] return p**factorint(n)[p] print([n for n in range(2, 301) if n>a053585(n)*primefactors(n)[-1]]) # Indranil Ghosh, Jul 13 2017
Extensions
Extended by Ray Chandler, Nov 17 2008
Offset changed to 1 by Michel Marcus, Jan 16 2014
Comments