cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027865 Sums of six consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.

Original entry on oeis.org

55, 91, 139, 199, 271, 355, 451, 559, 679, 811, 955, 1111, 1279, 1459, 1651, 1855, 2071, 2299, 2539, 2791, 3055, 3331, 3619, 3919, 4231, 4555, 4891, 5239, 5599, 5971, 6355, 6751, 7159, 7579, 8011, 8455, 8911, 9379, 9859, 10351, 10855, 11371, 11899, 12439, 12991
Offset: 0

Views

Author

Keywords

Comments

From Jean-Christophe Hervé, Nov 11 2015: (Start)
a(n) is defined for n < 0 and a(-n) = a(n-5) for any n; a(-4) = a(-1) = 31, a(-3) = a(-2) = 19.
a(n) == 3 (mod 4) for all n in Z, hence a(n) is never square.
(End)

Crossrefs

Programs

Formula

a(n) = 6*n^2 + 30*n + 55.
G.f.: (55 - 74*x + 31*x^2) / (1-x)^3. - R. J. Mathar, Jun 11 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 12*(n+2). - Jean-Christophe Hervé, Nov 11 2015
E.g.f.: (55 + 36*x + 6*x^2)*exp(x). - G. C. Greubel, Aug 25 2022
Sum_{n>=0} 1/a(n) = tanh(sqrt(35/3)*Pi/2)*Pi/(2*sqrt(105)) - 50/589. - Amiram Eldar, Sep 15 2022

Extensions

Corrected by Ralf Stephan, Jan 02 2005
Edited by Charles R Greathouse IV, Jul 25 2010
Renamed by Jean-Christophe Hervé, Nov 12 2015