cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027877 a(n) = Product_{i=1..n} (9^i - 1).

Original entry on oeis.org

1, 8, 640, 465920, 3056435200, 180476385689600, 95912370410881024000, 458745798479390789599232000, 19747501938318761090457052119040000, 7650586837724400321220283274999910891520000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132037.

Programs

  • Magma
    [1] cat [&*[ 9^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    Abs@QPochhammer[9, 9, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = prod(i=1, n, 9^i-1); \\ Altug Alkan, Dec 24 2015

Formula

a(n) ~ c * 3^(n*(n+1)), where c = Product_{k>=1} (1-1/9^k) = A132037 = 0.876560354035964205836019838417862010106635101174... . - Vaclav Kotesovec, Nov 21 2015
From - G. C. Greubel, Dec 24 2015: (Start)
8^n * 10^(floor(n/2))|a(n), for n>=0.
a(n) = 9^(binomial(n+1,2))*(1/9;1/9){n}, where (a;q){n} is the q-Pochhammer symbol. (End)
a(n) = Product_{i=1..n} A024101(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 9^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 9^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132037. - Amiram Eldar, May 07 2023