A027878 a(n) = Product_{i=1..n} (10^i - 1).
1, 9, 891, 890109, 8900199891, 890011088900109, 890010198889020099891, 8900101098880002109889900109, 890010100987899112108987901010099891, 890010100097889011121088788901111989989900109
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[1] cat [&*[10^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Mathematica
Table[Product[10^i-1,{i,n}],{n,0,10}] (* Harvey P. Dale, Aug 15 2011 *) Abs@QPochhammer[10, 10, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
PARI
a(n) = prod(k=1, n, 10^k - 1) \\ Altug Alkan, Nov 25 2015
Formula
a(n) ~ c * 10^(n*(n+1)/2), where c = Product_{k>=1} (1-1/10^k) = A132038 = 0.890010099998999000000100009999999989999900000000... . - Vaclav Kotesovec, Nov 21 2015
3^n*(11)^(floor(n/2)) divides a(n) for n>=0. - G. C. Greubel, Nov 24 2015
Equals 10^(binomial(n+1,2))*(1/10;1/10){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 10^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 10^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, May 07 2023: (Start)
Sum_{n>=0} 1/a(n) = A132326.
Sum_{n>=0} (-1)^n/a(n) = A132038. (End)