A027930 a(n) = T(n, 2*n-7), T given by A027926.
1, 3, 8, 21, 54, 133, 309, 674, 1383, 2683, 4950, 8735, 14820, 24285, 38587, 59652, 89981, 132771, 192052, 272841, 381314, 524997, 712977, 956134, 1267395, 1662011, 2157858, 2775763, 3539856, 4477949, 5621943, 7008264, 8678329, 10679043, 13063328, 15890685
Offset: 4
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1003
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Cf. A228074.
Programs
-
GAP
List([4..40], n-> Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120); # G. C. Greubel, Sep 06 2019
-
Magma
[Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120: n in [4..40]]; // G. C. Greubel, Sep 06 2019
-
Maple
seq(binomial(n-3,n-4)+binomial(n-2,n-5)+binomial(n-1,n-6)+binomial(n,n-7) , n=4..50); # Zerinvary Lajos, May 29 2007
-
Mathematica
Table[Total[Binomial[First[#],Last[#]]&/@Table[{n+i,n-1-i},{i,0,3}]],{n,35}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,3,8,21,54,133,309,674}, 35] (* Harvey P. Dale, Jun 23 2011 *)
-
PARI
vector(40, n, binomial(n+3, n-4) + n*(n^4 +15*n^2 +104)/120) \\ G. C. Greubel, Sep 06 2019
-
Sage
[binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120 for n in (4..40)] # G. C. Greubel, Sep 06 2019
Formula
a(n) = Sum_{k=0..3} binomial(n-k, 7-2k). - Len Smiley, Oct 20 2001
a(n) = C(n-3,n-4)+C(n-2,n-5)+C(n-1,n-6)+C(n,n-7). - Zerinvary Lajos, May 29 2007
From R. J. Mathar, Oct 05 2009: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x^4*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1-x)^8. (End)
From G. C. Greubel, Sep 06 2019: (Start)
a(n) = binomial(n-1, n-7) + (n-3)*((n-3)^4 + 15*(n-3)^2 + 104)/120.
E.g.f.: x*(5040 + 2520*x + 1680*x^2 + 630*x^3 + 168*x^4 + 21*x^5 + x^6)*exp(x)/5040. (End)