cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027930 a(n) = T(n, 2*n-7), T given by A027926.

Original entry on oeis.org

1, 3, 8, 21, 54, 133, 309, 674, 1383, 2683, 4950, 8735, 14820, 24285, 38587, 59652, 89981, 132771, 192052, 272841, 381314, 524997, 712977, 956134, 1267395, 1662011, 2157858, 2775763, 3539856, 4477949, 5621943, 7008264, 8678329, 10679043, 13063328, 15890685
Offset: 4

Views

Author

Keywords

Crossrefs

Cf. A228074.

Programs

  • GAP
    List([4..40], n-> Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120); # G. C. Greubel, Sep 06 2019
  • Magma
    [Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120: n in [4..40]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq(binomial(n-3,n-4)+binomial(n-2,n-5)+binomial(n-1,n-6)+binomial(n,n-7) , n=4..50); # Zerinvary Lajos, May 29 2007
  • Mathematica
    Table[Total[Binomial[First[#],Last[#]]&/@Table[{n+i,n-1-i},{i,0,3}]],{n,35}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,3,8,21,54,133,309,674}, 35] (* Harvey P. Dale, Jun 23 2011 *)
  • PARI
    vector(40, n, binomial(n+3, n-4) + n*(n^4 +15*n^2 +104)/120) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120 for n in (4..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{k=0..3} binomial(n-k, 7-2k). - Len Smiley, Oct 20 2001
a(n) = C(n-3,n-4)+C(n-2,n-5)+C(n-1,n-6)+C(n,n-7). - Zerinvary Lajos, May 29 2007
From R. J. Mathar, Oct 05 2009: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x^4*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1-x)^8. (End)
From G. C. Greubel, Sep 06 2019: (Start)
a(n) = binomial(n-1, n-7) + (n-3)*((n-3)^4 + 15*(n-3)^2 + 104)/120.
E.g.f.: x*(5040 + 2520*x + 1680*x^2 + 630*x^3 + 168*x^4 + 21*x^5 + x^6)*exp(x)/5040. (End)