cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028233 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 2, 3, 4, 53, 2, 5, 8, 3, 2, 59, 4, 61, 2, 9, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 16, 81, 2, 83, 4, 5, 2
Offset: 1

Views

Author

Keywords

Comments

Highest power of smallest prime dividing n. - Reinhard Zumkeller, Apr 09 2015

Examples

			From _Muniru A Asiru_, Jan 27 2018: (Start)
If n=10, then a(10) = 2 since 10 = 2^1*5^1.
If n=16, then a(16) = 16 since 16 = 2^4.
If n=29, then a(29) = 29 since 29 = 29^1.
(End)
		

Crossrefs

Programs

  • GAP
    List(List(List(List([1..10^3], Factors), Collected), i -> i[1]), j -> j[1]^j[2]); # Muniru A Asiru, Jan 27 2018
  • Haskell
    a028233 = head . a141809_row
    -- Reinhard Zumkeller, Jun 04 2012, Aug 17 2011
    
  • Maple
    A028233 := proc(n)
        local spf,pf;
        if n = 1 then
            return 1 ;
        end if;
        spf := A020639(n) ;
        for pf in ifactors(n)[2] do
            if pf[1] = spf then
                return pf[1]^pf[2] ;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 09 2016
    # second Maple program:
    a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[1])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018
  • Mathematica
    a[n_] := Power @@ First[ FactorInteger[n]]; Table[a[n], {n, 1, 86}] (* Jean-François Alcover, Dec 01 2011 *)
  • PARI
    a(n)=if(n>1,n=factor(n);n[1,1]^n[1,2],1) \\ Charles R Greathouse IV, Apr 26 2012
    
  • Python
    from sympy import factorint
    def a(n):
        f = factorint(n)
        return 1 if n==1 else min(f)**f[min(f)] # Indranil Ghosh, May 12 2017
    
  • Scheme
    ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (define (A028233 n) (if (< n 2) n (let ((lpf (A020639 n))) (let loop ((m lpf) (n (/ n lpf))) (cond ((not (zero? (modulo n lpf))) m) (else (loop (* m lpf) (/ n lpf)))))))) ;; Antti Karttunen, May 29 2017
    

Formula

a(n) = A020639(n)^A067029(n). - Reinhard Zumkeller, May 13 2006
a(n) = A141809(n,1). - Reinhard Zumkeller, Jun 04 2012
a(n) = n / A028234(n). - Antti Karttunen, May 29 2017

Extensions

Name edited to include a(1) = 1 by Franklin T. Adams-Watters, Jan 27 2018