cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028257 Engel expansion of sqrt(3).

Original entry on oeis.org

1, 2, 3, 3, 6, 17, 23, 25, 27, 73, 84, 201, 750, 24981, 46882, 119318, 121154, 242807, 276226, 3009377, 3383197, 37871208, 45930966, 261728403, 281868388, 3021299588, 3230725884, 13646315477, 30951797814, 80602040381, 1016719946612, 49448385811777
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu)

Keywords

Crossrefs

Cf. A006784 (for definition of Engel expansion), A220335.

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[3^(1/2),7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

Formula

For a number x (here sqrt(3)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)*a(n) - 1.

Extensions

Better name and more terms from Simon Plouffe
More terms from Sean A. Irvine, Dec 16 2019