A220335
A modified Engel expansion for sqrt(3) - 1.
Original entry on oeis.org
2, 3, 4, 2, 8, 14, 2, 98, 194, 2, 18818, 37634, 2, 708158978, 1416317954, 2, 1002978273411373058, 2005956546822746114, 2, 2011930833870518011412817828051050498, 4023861667741036022825635656102100994
Offset: 1
A220336
A modified Engel expansion for 4*sqrt(2) - 5.
Original entry on oeis.org
2, 4, 6, 2, 18, 34, 2, 578, 1154, 2, 665858, 1331714, 2, 886731088898, 1773462177794, 2, 1572584048032918633353218, 3145168096065837266706434, 2, 4946041176255201878775086487573351061418968498178, 9892082352510403757550172975146702122837936996354
Offset: 1
A054543
Engel series expansion (or "Egyptian product") for Catalan's constant G.
Original entry on oeis.org
2, 2, 2, 4, 4, 5, 5, 12, 13, 41, 110, 172, 248, 309, 3146, 5919, 21959, 22299, 30892, 401838, 1719239, 30576561, 262313756, 630913752, 3242181301, 3250783944, 13827502849, 40152067840, 137791590233, 2514510232695, 3217773878849
Offset: 1
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 53-59.
-
EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Catalan,7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)
A028254
Engel expansion of sqrt(2).
Original entry on oeis.org
1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
Offset: 1
Naoki Sato (naoki(AT)math.toronto.edu)
sqrt(2) = 1.4142135623730950488...
1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229...
1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373...
1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
Cf.
A002193 (decimal expansion),
A006784 (for definition of Engel expansion),
A028257 (Engel expansion of sqrt(3)).
-
expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)
A053977
Engel expansion of the Euler-Mascheroni constant gamma A001620 = 0.57721566... .
Original entry on oeis.org
2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, 147961485, 210810243, 814960948, 1003849128, 1016803038, 12917183059, 26242325020, 22215291139324, 30797877759859, 60139200644343, 121848657453426, 133555928335475
Offset: 1
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
- T. D. Noe, Table of n, a(n) for n=1..300
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Eric Weisstein's World of Mathematics, Engel Expansion
- Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant
- Index entries for sequences related to Engel expansions
-
EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]
More terms and additional comments from
Mitch Harris, Jan 15 2001
A053980
Engel expansion of zeta(3) = 1.20206... .
Original entry on oeis.org
1, 5, 98, 127, 923, 5474, 16490, 25355, 37910, 85150, 1033216, 2290644, 7844861, 11170684, 18884358, 21481832, 35060787, 52399788, 201059261, 261533994, 9939708446, 211698940106, 3030068839686, 4326424644987, 6082687570463
Offset: 1
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Index entries for sequences related to Engel expansions
-
EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ] ], Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]
More terms and additional comments from
Mitch Harris, Jan 15 2001
A054544
Engel series expansion (or "Egyptian product") for Khintchine's constant.
Original entry on oeis.org
1, 1, 2, 3, 9, 70, 117, 503, 648, 1078, 12868, 41235, 178650, 377670, 394301, 546185, 2600672, 8729780, 41318679, 83367169, 525961060, 561571346, 1556964264, 1868773845, 15139200289, 27297789005, 30324107039, 56699922000
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 59-65.
Showing 1-7 of 7 results.
Comments