cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A220335 A modified Engel expansion for sqrt(3) - 1.

Original entry on oeis.org

2, 3, 4, 2, 8, 14, 2, 98, 194, 2, 18818, 37634, 2, 708158978, 1416317954, 2, 1002978273411373058, 2005956546822746114, 2, 2011930833870518011412817828051050498, 4023861667741036022825635656102100994
Offset: 1

Views

Author

Peter Bala, Dec 12 2012

Keywords

Comments

This is the case p = 2 of a family of quadratic irrationals of the form (p - 1)*sqrt(p^2 - 1) - (p^2 - p - 1) whose modified Engel expansion, as defined below, has a predictable form. For other cases see A220336 (p = 3), A220337 (p = 4) and A220338 (p = 5).
The Engel expansion of a positive real number x in the half-open interval (0,1] is the unique nondecreasing sequence {e(1), e(2), e(3), ...} of positive integers such that x = 1/e(1) + 1/(e(1)*e(2)) + 1/(e(1)*e(2)*e(3)) + .... The terms in the Engel expansion of x are obtained from the iterates of the map g(x) = x*(1 + floor(1/x)) - 1 by means of the formula e(n) = 1 + floor(1/g^(n-1)(x)). Here g^(n)(x) = g(g^(n-1)(x)) denotes the n-th iterate of g(x) with the convention g^(0)(x) = x.
In a similar way, the modified Engel expansion of x belonging to (0,1] is a sequence {E(1), E(2), E(3), ...} of positive integers such that x = 1/E(1) + 1/(E(1)*E(2)) + 1/(E(1)*E(2)*E(3)) + ... whose terms are obtained from the iterates of the harmonic sawtooth map h(x) = floor(1/x)*g(x). The general formula is E(1) = 1 + floor(1/x) and for n >= 1, E(n) = floor(1/h^(n-2)(x))*(1 + floor(1/h^(n-1)(x))). For further details see the Bala link.

Crossrefs

Cf. A002812, A028257, A220336 (p = 3), A220337 (p = 4), A220338 (p = 5).

Formula

Let x = sqrt(3) - 1. Then a(1) = ceiling(1/x) and for n >= 2, a(n) = floor(1/h^(n-2)(x))*ceiling(1/h^(n-1)(x)), where h^(n)(x) denotes the n-th iterate of the harmonic sawtooth map h(x), with the convention h^(0)(x) = x.
a(3*n+2) = 1/2*{2 + (2 + sqrt(3))^(2^n) + (2 - sqrt(3))^(2^n)} and
a(3*n+3) = (2 + sqrt(3))^(2^n) + (2 - sqrt(3))^(2^n), both for n >= 0.
For n >= 0, a(3*n+1) = 2. For n >= 1, a(3*n+2) = 2*(A002812(n-1))^2 and a(3*n+3) = 4*(A002812(n-1))^2 - 2.
Recurrence equations:
For n >= 1, a(3*n+2) = 2*{a(3*n-1)^2 - 2*a(3*n-1) + 1} and
a(3*n+3) = 2*a(3*n+2) - 2.
Put P(n) = Product_{k=1..n} a(k). Then we have the infinite Egyptian fraction representation sqrt(3) - 1 = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*2) + ....

A220336 A modified Engel expansion for 4*sqrt(2) - 5.

Original entry on oeis.org

2, 4, 6, 2, 18, 34, 2, 578, 1154, 2, 665858, 1331714, 2, 886731088898, 1773462177794, 2, 1572584048032918633353218, 3145168096065837266706434, 2, 4946041176255201878775086487573351061418968498178, 9892082352510403757550172975146702122837936996354
Offset: 1

Views

Author

Peter Bala, Dec 12 2012

Keywords

Comments

For a brief description of the modified Engel expansion of a real number see A220335.
Let p >= 2 be an integer and set Q(p) = (p - 1)*sqrt(p^2 - 1) - (p^2 - p - 1), so Q(3) = 4*sqrt(2) - 5. Iterating the identity Q(p) = 1/2 + 1/(2*(p+1)) + 1/(2*(p+1)*(2*p)) + 1/(2*(p+1)*(2*p))*Q(2*p^2-1) leads to a representation for Q(p) as an infinite series of unit fractions. The sequence of denominators of these unit fractions can be used to find the modified Engel expansion of Q(p). For further details see the Bala link. The present sequence is the case p = 3. For other cases see A220335 (p = 2), A220337 (p = 4) and A220338 (p = 5).

Crossrefs

Cf. A001601, A028257, A220335 (p = 2), A220337 (p = 4), A220338 (p = 5).

Formula

Define the map h(x) := floor(1/x)*(x*ceiling(1/x) - 1). Let x = 4*sqrt(2) - 5. Then a(1) = ceiling(1/x) and for n >= 2, a(n) = floor(1/h^(n-2)(x))*ceiling(1/h^(n-1)(x)), where h^(n)(x) denotes the n-th iterate of the map h(x), with the convention h^(0)(x) = x.
a(3*n+2) = 1/2*{2 + (1+sqrt(2))^(2^(n+1)) + (1-sqrt(2))^(2^(n+1))},
a(3*n+3) = {(1 + sqrt(2))^(2^(n+1)) + (1 - sqrt(2))^(2^(n+1))}, both
for n >= 0.
For n >= 0, a(3*n+1) = 2. For n >= 1, a(3*n+2) = 2*A001601(n)^2 and a(3*n+3) = 4*A001601(n)^2 - 2.
Recurrence equations:
For n >= 1, a(3*n+2) = 2*{a(3*n-1)^2 - 2*a(3*n-1) + 1} and
a(3*n+3) = 2*a(3*n+2) - 2.
Put P(n) = Product_{k=1..n} a(k). Then we have the infinite Egyptian fraction representation 4*sqrt(2) - 5 = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*4) + 1/(2*4*6) + 1/(2*4*6*2) + 1/(2*4*6*2*18) + ....

A054543 Engel series expansion (or "Egyptian product") for Catalan's constant G.

Original entry on oeis.org

2, 2, 2, 4, 4, 5, 5, 12, 13, 41, 110, 172, 248, 309, 3146, 5919, 21959, 22299, 30892, 401838, 1719239, 30576561, 262313756, 630913752, 3242181301, 3250783944, 13827502849, 40152067840, 137791590233, 2514510232695, 3217773878849
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 53-59.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Catalan,7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

A028254 Engel expansion of sqrt(2).

Original entry on oeis.org

1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu)

Keywords

Comments

For a number x (here sqrt(2)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)a(n) - 1.

Examples

			sqrt(2) = 1.4142135623730950488...
1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229...
1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373...
1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
		

Crossrefs

Cf. A002193 (decimal expansion), A006784 (for definition of Engel expansion), A028257 (Engel expansion of sqrt(3)).

Programs

  • Mathematica
    expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

Extensions

More terms from Simon Plouffe, Jan 05 2002

A053977 Engel expansion of the Euler-Mascheroni constant gamma A001620 = 0.57721566... .

Original entry on oeis.org

2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, 147961485, 210810243, 814960948, 1003849128, 1016803038, 12917183059, 26242325020, 22215291139324, 30797877759859, 60139200644343, 121848657453426, 133555928335475
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A053980 Engel expansion of zeta(3) = 1.20206... .

Original entry on oeis.org

1, 5, 98, 127, 923, 5474, 16490, 25355, 37910, 85150, 1033216, 2290644, 7844861, 11170684, 18884358, 21481832, 35060787, 52399788, 201059261, 261533994, 9939708446, 211698940106, 3030068839686, 4326424644987, 6082687570463
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ] ], Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A054544 Engel series expansion (or "Egyptian product") for Khintchine's constant.

Original entry on oeis.org

1, 1, 2, 3, 9, 70, 117, 503, 648, 1078, 12868, 41235, 178650, 377670, 394301, 546185, 2600672, 8729780, 41318679, 83367169, 525961060, 561571346, 1556964264, 1868773845, 15139200289, 27297789005, 30324107039, 56699922000
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 59-65.

Crossrefs

Showing 1-7 of 7 results.