A002194 Decimal expansion of sqrt(3).
1, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2, 6, 1, 4, 1, 4, 1, 5, 4
Offset: 1
Examples
1.73205080756887729352744634150587236694280525381038062805580697945193...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 184.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.4 Theorems and Formulas (Solid Geometry), pp. 84, 450.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Madeleine Bonsma-Fisher and Kent Bonsma-Fisher, How big a table do you need for your jigsaw puzzle?, arXiv:2312.04588 [math.HO], 2023.
- M. F. Jones, 22900D approximations to the square roots of the primes less than 100, Math. Comp., Vol. 22, No. 101 (1968), pp. 234-235.
- Kiran S. Kedlaya, A < B, (1999) Problem 6.4, p. 6.
- Jason Kimberley, Index of expansions of sqrt(d) in base b.
- Robert J. Nemiroff and Jerry Bonnell, The first 1 million digits of the square root of 3.
- Simon Plouffe, Plouffe's Inverter, The square root of 3 to 10 million digits.
- Horace S. Uhler, Approximations exceeding 1300 decimals for sqrt 3, 1/sqrt 3, sin(pi/3) and distribution of digits in them, Proc. Nat. Acad. Sci. U. S. A., Vol. 37, No. 7 (1951), pp. 443-447.
- Eric Weisstein's World of Mathematics, Reflection Triangle.
- Eric Weisstein's World of Mathematics, Square Root.
- Eric Weisstein's World of Mathematics, Theodorus's Constant.
- Wikipedia, Platonic solid.
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(3); // G. C. Greubel, Aug 21 2018
-
Maple
evalf(sqrt(3), 100); # Michal Paulovic, Feb 24 2023
-
Mathematica
RealDigits[Sqrt[3], 10, 100][[1]]
-
PARI
default(realprecision, 20080); x=(sqrt(3)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002194.txt", n, " ", d)); \\ Harry J. Smith, Jun 01 2009
Formula
Equals Sum_{k>=0} binomial(2*k,k)/6^k = Sum_{k>=0} binomial(2*k,k) * k/6^k. - Amiram Eldar, Aug 03 2020
sqrt(3) = 1 + 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*2) + 1/(2*3*4*2*8) + 1/(2*3*4*2*8*14) + 1/(2*3*4*2*8*14*2) + 1/(2*3*4*2*8*14*2*98) + 1/(2*3*4*2*8*14*2*98*194) + .... (Define F(n) = (n-1)*sqrt(n^2 - 1) - (n^2 - n - 1). Show F(n) = 1/2 + 1/(2*(n+1)) + 1/(2*(n+1)*(2*n)) + 1/(2*(n+1)*(2*n))*F(2*n^2 - 1) for n >= 0; then iterate this identity at n = 2. See A220335.) - Peter Bala, Mar 18 2022
Equals i^(1/3) + i^(-1/3). - Gary W. Adamson, Jul 06 2022
Equals Product_{n>=1} 3^(1/3^n). - Michal Paulovic, Feb 24 2023
Equals Product_{n>=0} ((6*n + 2)*(6*n + 4))/((6*n + 1)*(6*n + 5)). - Antonio Graciá Llorente, Feb 22 2024
Equals tan(Pi/3) = A010527/(1/2). - R. J. Mathar, Aug 31 2025
Extensions
More terms from Robert G. Wilson v, Dec 07 2000
Comments