A028262 Elements in 3-Pascal triangle (by row).
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 13, 13, 6, 1, 1, 7, 19, 26, 19, 7, 1, 1, 8, 26, 45, 45, 26, 8, 1, 1, 9, 34, 71, 90, 71, 34, 9, 1, 1, 10, 43, 105, 161, 161, 105, 43, 10, 1, 1, 11, 53, 148, 266, 322, 266, 148, 53, 11, 1, 1, 12, 64, 201, 414, 588, 588, 414, 201, 64, 12, 1
Offset: 0
Examples
Triangle begins: 1; 1 1; 1 3 1; 1 4 4 1; 1 5 8 5 1; ...
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- László Németh, Tetrahedron trinomial coefficient transform, Integers (2019) Vol. 19, Article A41.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a028262 n k = a028262_tabl !! n !! k a028262_row n = a028262_tabl !! n a028262_tabl = [1] : [1,1] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3,1] -- Reinhard Zumkeller, Aug 02 2012
-
Magma
T:= func< n,k | n lt 2 select 1 else Binomial(n, k) + Binomial(n-2, k-1) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
-
Mathematica
T[n_, k_]:= If[n==1, 1, Binomial[n, k] + Binomial[n-2, k-1]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jan 28 2015 *)
-
Sage
def T(n,k): return 1 if n<2 else binomial(n,k) + binomial(n-2,k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
Formula
After the 3rd row, use Pascal's rule.
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + C(n-2, k-1).
G.f.: (1 + x^2*y)/(1 - x*(1+y)). (End)
Sum_{k=0..n} T(n,k) = (n+1)*[n<2] + 5*2^(n-2)*[n>=2]. - G. C. Greubel, Apr 28 2021
Extensions
More terms from James Sellers