cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028262 Elements in 3-Pascal triangle (by row).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 6, 13, 13, 6, 1, 1, 7, 19, 26, 19, 7, 1, 1, 8, 26, 45, 45, 26, 8, 1, 1, 9, 34, 71, 90, 71, 34, 9, 1, 1, 10, 43, 105, 161, 161, 105, 43, 10, 1, 1, 11, 53, 148, 266, 322, 266, 148, 53, 11, 1, 1, 12, 64, 201, 414, 588, 588, 414, 201, 64, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1 1;
  1 3 1;
  1 4 4 1;
  1 5 8 5 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a028262 n k = a028262_tabl !! n !! k
    a028262_row n = a028262_tabl !! n
    a028262_tabl = [1] : [1,1] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3,1]
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Magma
    T:= func< n,k | n lt 2 select 1 else Binomial(n, k) + Binomial(n-2, k-1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
    
  • Mathematica
    T[n_, k_]:= If[n==1, 1, Binomial[n, k] + Binomial[n-2, k-1]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jan 28 2015 *)
  • Sage
    def T(n,k): return 1 if n<2 else binomial(n,k) + binomial(n-2,k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021

Formula

After the 3rd row, use Pascal's rule.
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + C(n-2, k-1).
G.f.: (1 + x^2*y)/(1 - x*(1+y)). (End)
T(n+2,k+1) = A007318(n,k) - A007318(n+2,k+1); 0 < k < n. - Reinhard Zumkeller, Aug 02 2012
Sum_{k=0..n} T(n,k) = (n+1)*[n<2] + 5*2^(n-2)*[n>=2]. - G. C. Greubel, Apr 28 2021

Extensions

More terms from James Sellers