A028291 Expansion of 1/((1-x)^2(1-x^2)(1-x^3)(1-x^5)) in powers of x.
1, 2, 4, 7, 11, 17, 25, 35, 48, 64, 84, 108, 137, 171, 211, 258, 312, 374, 445, 525, 616, 718, 832, 959, 1100, 1256, 1428, 1617, 1824, 2050, 2297, 2565, 2856, 3171, 3511, 3878, 4273, 4697, 5152, 5639, 6160, 6716, 7309, 7940, 8611, 9324, 10080, 10881, 11729
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 17*x^5 + 25*x^6 + 35*x^7 + ...
References
- Susan Elle, Ore extensions of global dimension 5, Abstract 1110-17-204, Abstracts Amer. Math. Soc., 36 (No. 2, 2015), p. 822.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,1,0,-1,1,1,0,-2,1).
Programs
-
Mathematica
a[ n_] := Quotient[n (n + 12) (n^2 + 12 n + 52), 720] + 1; (* Michael Somos, Jun 05 2014 *) a[ n_] := With[{m = If[ n < 0, -12 - n, n]}, SeriesCoefficient[ 1 / ((1 - x)^2*(1 - x^2)*(1 - x^3)*(1 - x^5)), {x, 0, m}]]; (* Michael Somos, Jun 05 2014 *) Table[Round[(n + 1)*(n^3 + 23*n^2 + 173*n + 451)/720], {n, 0, 40}] (* Wesley Ivan Hurt, Jun 05 2014 *) LinearRecurrence[{2,0,-1,-1,1,0,-1,1,1,0,-2,1},{1,2,4,7,11,17,25,35,48,64,84,108},50] (* Harvey P. Dale, Sep 06 2022 *)
-
PARI
Vec(1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^5))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
-
PARI
{a(n) = n * (n+12) * (n^2 + 12*n + 52) \ 720 + 1}; /* Michael Somos, Jun 05 2014 */
-
PARI
{a(n) = if( n<0, n = -12 - n); polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Jun 05 2014 */
Formula
a(n) = round((n+1)*(n^3+23*n^2+173*n+451)/720). - Tani Akinari, Jun 05 2014
a(n) - 2*a(n-1) + a(n+3) + a(n+4) - 2*a(n+6) + a(n+7) = 1 if n == 3 (mod 5) else 0. - Michael Somos, Jun 05 2014
a(n) = a(-12 - n) for all n in Z. - Michael Somos, May 14 2015
Euler transform of length 5 sequence [ 2, 1, 1, 0, 1]. - Michael Somos, May 14 2015
Comments