cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028291 Expansion of 1/((1-x)^2(1-x^2)(1-x^3)(1-x^5)) in powers of x.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 25, 35, 48, 64, 84, 108, 137, 171, 211, 258, 312, 374, 445, 525, 616, 718, 832, 959, 1100, 1256, 1428, 1617, 1824, 2050, 2297, 2565, 2856, 3171, 3511, 3878, 4273, 4697, 5152, 5639, 6160, 6716, 7309, 7940, 8611, 9324, 10080, 10881, 11729
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Partitions of n into parts 1, 2, 3, and 5. - Joerg Arndt, Jun 05 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 17*x^5 + 25*x^6 + 35*x^7 + ...
		

References

  • Susan Elle, Ore extensions of global dimension 5, Abstract 1110-17-204, Abstracts Amer. Math. Soc., 36 (No. 2, 2015), p. 822.

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[n (n + 12) (n^2 + 12 n + 52), 720] + 1; (* Michael Somos, Jun 05 2014 *)
    a[ n_] := With[{m = If[ n < 0, -12 - n, n]}, SeriesCoefficient[ 1 / ((1 - x)^2*(1 - x^2)*(1 - x^3)*(1 - x^5)), {x, 0, m}]]; (* Michael Somos, Jun 05 2014 *)
    Table[Round[(n + 1)*(n^3 + 23*n^2 + 173*n + 451)/720], {n, 0, 40}] (* Wesley Ivan Hurt, Jun 05 2014 *)
    LinearRecurrence[{2,0,-1,-1,1,0,-1,1,1,0,-2,1},{1,2,4,7,11,17,25,35,48,64,84,108},50] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    Vec(1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^5))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    {a(n) = n * (n+12) * (n^2 + 12*n + 52) \ 720 + 1}; /* Michael Somos, Jun 05 2014 */
    
  • PARI
    {a(n) = if( n<0, n = -12 - n); polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Jun 05 2014 */

Formula

a(n) = round((n+1)*(n^3+23*n^2+173*n+451)/720). - Tani Akinari, Jun 05 2014
a(n) - 2*a(n-1) + a(n+3) + a(n+4) - 2*a(n+6) + a(n+7) = 1 if n == 3 (mod 5) else 0. - Michael Somos, Jun 05 2014
a(n) = a(-12 - n) for all n in Z. - Michael Somos, May 14 2015
a(n) - a(n-1) = A008669(n), a(n) - a(n-3) = A001304(n) for all n in Z. - Michael Somos, May 14 2015
Euler transform of length 5 sequence [ 2, 1, 1, 0, 1]. - Michael Somos, May 14 2015