A028314 Elements in the 5-Pascal triangle A028313 that are not 1.
5, 6, 6, 7, 12, 7, 8, 19, 19, 8, 9, 27, 38, 27, 9, 10, 36, 65, 65, 36, 10, 11, 46, 101, 130, 101, 46, 11, 12, 57, 147, 231, 231, 147, 57, 12, 13, 69, 204, 378, 462, 378, 204, 69, 13, 14, 82, 273, 582, 840, 840, 582, 273, 82, 14, 15, 96, 355, 855, 1422, 1680, 1422, 855, 355, 96, 15
Offset: 0
Examples
Triangle begins as: 5; 6, 6; 7, 12, 7; 8, 19, 19, 8; 9, 27, 38, 27, 9; 10, 36, 65, 65, 36, 10; 11, 46, 101, 130, 101, 46, 11; 12, 57, 147, 231, 231, 147, 57, 12; 13, 69, 204, 378, 462, 378, 204, 69, 13;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A028314:= func< n,k | Binomial(n+2,k+1) + 3*Binomial(n,k) >; [A028314(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 06 2024
-
Mathematica
A028314[n_, k_]:= Binomial[n+2,k+1] + 3*Binomial[n,k]; Table[A028314[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def A028314(n,k): return binomial(n+2,k+1) + 3*binomial(n,k) flatten([[A028314(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 06 2024
Formula
From G. C. Greubel, Jan 06 2024: (Start)
T(n, k) = binomial(n+2, k+1) + 3*binomial(n, k).
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A000027(n+5).
T(n, 1) = T(n, n-1) = A051936(n+4).
Sum_{k=0..n} T(n, k) = A176448(n).
Sum_{k=0..n} (-1)^k * T(n, k) = 1 + (-1)^n + 3*[n=0].
Sum_{k=0..n} T(n-k, k) = A022112(n+1) - (3-(-1)^n)/2.
G.f.: (5 - 4*x - 4*x*y + 3*x^2*y)/((1 - x)*(1 - x*y)*(1 - x - x*y)). - Stefano Spezia, Dec 06 2024
Extensions
More terms from James Sellers