cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028321 Even elements to the right of the central elements of the 5-Pascal triangle A028313.

Original entry on oeis.org

6, 8, 36, 10, 46, 12, 378, 204, 840, 582, 82, 14, 1422, 96, 3102, 1210, 16, 562, 8866, 5148, 144, 18, 14014, 2912, 162, 20, 78078, 55848, 31668, 14028, 4740, 1176, 165308, 133926, 87516, 45696, 18768, 5916, 222, 22, 299234, 221442, 133212
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    T:= func< n, k | n le 1 select 1 else Binomial(n, k) + 3*Binomial(n-2, k-1) >; // T = A028323
    b:=[T(n, k): k in [1+Floor(n/2)..n], n in [0..100]];
    [b[n]: n in [1..150] | (b[n] mod 2) eq 0]; // G. C. Greubel, Jul 02 2024
    
  • Mathematica
    b:= Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k, Floor[n/2]+1, n}]//Flatten;
    Select[b, EvenQ] (* G. C. Greubel, Jul 02 2024 *)
  • SageMath
    def A028323(n, k): return binomial(n, k) + 3*binomial(n-2, k-1) - 3*int(n==0)
    b=flatten([[A028323(n, k) for k in range(1+(n//2),n+1)] for n in range(101)])
    [b[n] for n in (1..150) if b[n]%2==0] # G. C. Greubel, Jul 02 2024

Extensions

More terms from James Sellers