A028321 Even elements to the right of the central elements of the 5-Pascal triangle A028313.
6, 8, 36, 10, 46, 12, 378, 204, 840, 582, 82, 14, 1422, 96, 3102, 1210, 16, 562, 8866, 5148, 144, 18, 14014, 2912, 162, 20, 78078, 55848, 31668, 14028, 4740, 1176, 165308, 133926, 87516, 45696, 18768, 5916, 222, 22, 299234, 221442, 133212
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
T:= func< n, k | n le 1 select 1 else Binomial(n, k) + 3*Binomial(n-2, k-1) >; // T = A028323 b:=[T(n, k): k in [1+Floor(n/2)..n], n in [0..100]]; [b[n]: n in [1..150] | (b[n] mod 2) eq 0]; // G. C. Greubel, Jul 02 2024
-
Mathematica
b:= Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k, Floor[n/2]+1, n}]//Flatten; Select[b, EvenQ] (* G. C. Greubel, Jul 02 2024 *)
-
SageMath
def A028323(n, k): return binomial(n, k) + 3*binomial(n-2, k-1) - 3*int(n==0) b=flatten([[A028323(n, k) for k in range(1+(n//2),n+1)] for n in range(101)]) [b[n] for n in (1..150) if b[n]%2==0] # G. C. Greubel, Jul 02 2024
Extensions
More terms from James Sellers